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Xeon-D Vs Xeon-E for embedded radar applications
Comparing server-class devices for Space Time Adaptive Processing applications

Introduction
For airborne radars, longer, higher and further means more processing power in smaller, rugged efficient packages. 
The best implementations of ANSI/VITA 65 (OpenVPX), the de facto embedded military open system compute ar-
chitecture meets the ruggedness and compact requirements, and adds scalability. Especially when implemented as 
VPX-REDI (VITA 48) even greater ruggedness and increased functional density is possible, as is the ease of two-level 
maintenance (2LM). Processing power is achieved by leveraging the best commercial Intel Xeon data-center compute 
capability. Xeon processors are available as either “mobile” devices (Xeon D) which are designed for laptop appli-
cations which require lower power, less cores, lower memory bandwidth and less connectivity. Xeon E processors 
power data-centers and cloud facilities worldwide. Such processors typically have larger core counts, faster memory 
and increased connectivity such as QPI enabling efficient use of multiple on-board processor and SMP.

Embedding Xeon E devices in to military applications requires rugged packaging, reliable/efficient cooling, fast and 
unrestricted pipes and banks of memory. Mercury’s proven (fourth generation) OpenVPX Xeon E powered blades have 
these enabling technologies and are known as the Ensemble® HDS (High Density Server) series of blades., How do 
these embedded blades with data-center performance usher in the next generation of radar systems? In the past 
Space Time Adaptive Processing (STAP) was a challenge for embedded systems. This white paper studies STAP 
processing approaches, using Xeon D and E processors for comparison.

JONAS LARSSON
PRINCIPAL SYSTEMS APPLICATION ENGINEER
APRIL 2017
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Figure 2. Pre-processing

The parameters used in this section are introduced in Table 1.
Table 1. Pre-processing parameters 

Pre-processing parameters

Nr channels L

Nr pulses per CPI PCPI

Nr pulses per Doppler processing block PD

Samples per pulse before decimation N

Decimation factor D

Samples per pulse after decimation ND

FIR filter length used anti-aliasing in video-to-I/Q Ka

FFT size (power of 2) used by overlap-save fast con-
volution

R

Convolution length in calibration and pulse compres-
sion

Rcp

Number of blocks in the overlap-save fast convolution 
method B = ND / Rcp

B

Doppler FFT Size (power of 2) K

The number of operations required for the pre-processing is listed in 
Table 2
Table 2. Pre-processing number of operations

Nr Operations

Video-to-IQ

Demodulation to baseband L * PCPI * 2N

Low-pass filter (anti-aliasing using 
FIR filter) and decimate sample 

rate

L * PCPI * 3Ka*ND

Array  
calibration &

pulse  
compression

Array calibration and pulse com-
pression total

L * PCPI * B * (10R * log2R 
+ 6R)

Forward FFT to get into frequency 
domain

L * PCPI * B * (5R * log2R) 

Multiplications in frequency 
domain

L * PCPI * B * 6R

Inverse FFT to return to time 
domain

L * PCPI * B * (5R * log2R)

Doppler processing L * ND * (5K * log2K + 2PD)

Array
Calibration

Frequency

Pulse Compression

Video to IQ

Decimate
Sample RateLowpass Filter

Demodulate
to baseband

Doppler Filter

Space Time Adaptive Processing (STAP)
STAP radar systems adaptively compute weights to reduce the effect of 
clutter and jamming. Targets in motion relative to the radar will pres-
ent a Doppler shift in the returned radar echo. In typical moving target 
indicator (MTI) radars, this is taken advantage of. However, if the radar 
platform is in motion, such as in airborne radar systems, then also the 
ground will present a Doppler shift. In such environments it can be chal-
lenging to separate ground clutter from targets. Fortunately, such ground 
clutter typically provides a similar Doppler shift for the area adjacent to 
the area being examined. By constructing a filter which will take such an 
adjacent area into consideration, a STAP system can reduce the effect of 
ground clutter. With the use of an antenna array and adaptive weights, 
the STAP system can also adapt the radar antenna pattern by placing 
nulls in the direction of jammers.

Computing the adaptive weights in real-time is an intensive process; 
computational burden can be reduced by selecting computations most 
suitable for the processing technology. Even if the most suitable ap-
proach is selected for a high-performance multi-channels STAP system, 
the processing demand can be substantial. As such, previous generation 
compute solutions were unable to meet size, weight and power (SWAP) 
requirements, making STAP difficult to deploy.

Next generation processor, GPU and FPGA technology enables the de-
ployment of effective STAP systems in airborne platforms. While mul-
tiple technologies can be used, the technology can greatly affect the 
programmability, scalability and life-cycle management of the platform.

This white paper analyses Xeon server-class processors in airborne 
STAP systems. It is not an evaluation of current techniques in STAP sci-
ence and practice. Instead it is an evaluation of new compute technolo-
gies that target this class of processing, while comparing mobile (D) and 
data-center (E) Xeon processing capabilities.

STAP algorithm
Figure 1 illustrates the STAP processing blocks. This STAP algorithm is 
further described by Cain et al. 
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Figure 1. STAP overview

The initial stage with pre-processing typically includes Video-to-IQ con-
version, array calibration and pulse compression followed by Doppler 
filtering. The Video-to-IQ conversion usually includes demodulation to 
baseband, low-pass filtering and decimation of sample rate. These pro-
cessing blocks are illustrated in Figure 2.



Adaptive weight processing
The most demanding processing stage in STAP is to calculate and apply 
the adaptive weights vectors. The weight vectors are then used to form 
beams in beam forming. This process is described in Figure 3.
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Figure 3. Adaptive processing

Calculating such adaptive weights may be performed in several ways. 
The two most commonly used methods to solve this equation in STAP 
applications are Cholesky and QR decomposition. 

Cholesky method
With the Cholesky matrix method we first solve the following equation,

Mcov * Vweight = Vsteer
We define Mcov = Z * ZH and compute Mcov
Solving system Vweight = Mcov -1 * Vsteer determines the upper tri-
angular R. We then use forward and backward substitution to compute 
weight vector.

In the Cholesky approach, the data samples (i.e. voltages) are multiplied 
together to form the elements of the covariance matrix. The units of 
these elements are 'power', and thus the numerical dynamic range of 
the elements (in dB) are double that of the elements in the original data. 
As a result, especially in the presence of interference signals having 
a high interference-to-noise ratio, the resulting covariance matrix can 
rapidly become ill-conditioned requiring double-precision arithmetic to 
obtain an accurate decomposition. The QR decomposition approach de-
scribed in the following section avoids this problem by working directly 
with the data in the 'voltage' domain, rather than with the 'power' ele-
ments of the covariance matrix. 

QR decomposition method
With the QR decomposition method you would apply the QR decompo-
sition directly to the complex data matrix to obtain the desired upper 
triangular factor matrix R. In this method we decompose space-time 
matrix MxN for some range cells. We then use forward and backward 
substitution to compute weight vector. Once we have the weight vector 
we apply it using vector-matrix multiplication.

A drawback with the QR decomposition method is that it requires nearly 
twice as much computation as Cholesky but given the finite-precision 
arithmetic inherent in all digital processors, the QR decomposition meth-
od is numerically more stable than the Cholesky method.

3

Using the QR decomposition method the number of operations required 
for weights computation and application is described in Table 3. The 
parameters used are K Doppler FFT size (power of 2), M independent 
non-overlapping range blocks, L channels, Q processing order, and NR 

contiguous range cells per weight computation.
Table 3. Adaptive processing

Functional Block Functional Block Nr Operations

Adaptive  
processing

Weights computation K * M * 8 * [L*Q]²*(NR+1)

Weights application K * M * (8 * L* Q * NR)

A first-order Doppler-factored STAP (Q = 1) represents a first-order post-
Doppler adaptive DPCA algorithm. This is a basic post-Doppler STAP for 
clutter and interference suppression. It can be effective but since it only 
operates in a single temporal degree of freedom (DOF) it is not a true 
STAP. The processing demand for this algorithm is modest.

A third-order Doppler-factored STAP provides performance approaching 
a fully adaptive system. This approach efficiently supresses clutter and 
interference. The processing demand for this algorithm can be high, es-
pecially for a high channel count. This is where we will focus this study.

STAP parameters and processing requirements
In order to better understand the computational load related to these 
algorithms this section analyses the effect of some of these. For this 
exercise we have assumed the parameters listed in Table 4.
Table 4. STAP Parameters

Parameter Name Value

IF sampling rate [MHz] Fs 5

Time per pulse, TP = TCPI / PCPI    [us] TP 504

Time per CPI TCPI = 32.25 ms   [ms] TCPI 32.25

Range = C / (2*PRF) [km] Range 75

Pulses per second, PRF = 1/TP [kHz] PRF 1984

Samples per CPI, NCPI = PCPI * N NCPI 122,880

Nr channels L 22

Nr pulses per CPI PCPI 64

Nr pulses per Doppler processing block PD 64

Samples per pulse before decimation N 1920

Decimation factor D 4

Samples per pulse after decimation ND 480

FIR filter length used in video-to-I/Q Ka 36

FIR filter length used in array calibration Kc 3

FIR filter length used in pulse compression Kp 63

Convolution length in calibration and pulse 
compression

Rcp 192

FFT size (power of 2) used by overlap-save fast 
convolution

R 256

Number of blocks in the overlap-save fast  
convolution method B = ND / Rcp 

B 3

Doppler FFT Size (power of 2) K 64

Number of independent non-overlapping range 
blocks

M 2

Nr contiguous range cells per weight  
computation

NR 240

Processing order Q 3
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previous sections the amount of processing required to perform STAP in 
real-time is highly affected by parameters such as sampling speed and 
Degree of Freedom (DOF). Since this study focus on a third-order Dop-
pler-factored STAP with 22 channels (L) and processor order (Q adjacent 
Doppler bins) set to 3 we have a degree of freedom (DOF=L*Q) of 66. As 
previously discussed the number of operations required to adaptively 
compute weights increases with DOF2 which means that a doubling of 
either channels (L) or processing order (Q) will quadruple the operation 
rate.

The following figures illustrate the effect of the number of channels on 
the various processing blocks. Here we can see that weight computation 
dramatically increases with the number of channels to process.

Figure 4. Processing versus channels

As illustrated in the Figure 4, for STAP processing it is typical that weight 
computation forms a majority of the overall processing requirements. 
Therefore in order to assess the usability of a particular platform it 
seems logical to focus a STAP feasibility study on the efficiency to per-
form weight computation.

If we perform weight computation using QRD method then this involves 
decomposition of space-time matric MxN for some range cells (e.g. 240). 
We then use QR decomposition to give the upper triangular R. Finally, we 
use forward and backward substitution to compute the weight vector.

Depending on the optimised implementation the data might need to be 
rearranged to suite the underlying architecture. For instance an opti-
mised Gram-Schmidt QR decomposition requires the transpose of the 
matrix.

Benchmark development
The STAP benchmark used herein is based on the MITRE RT_STAP 
benchmark [1]. The benchmark was originally developed twenty years 
ago, to run on processor technology available at the time of the bench-
mark. Since then, technology has moved forward. Despite evolving hard-
ware all the involved APIs such as math library (Mercury MathPack) and 
data movement (MPI) has been maintained during this time. As a result 
of this the porting activity has mainly involved setting up the build envi-
ronment and to build against the latest libraries for the selected proces-
sor type. 

Optimisations
Function mapping file

Using a function-by-function selection mapping file the most efficient 
function was selected from multiple optimized math libraries (e.g. Intel 
IPP, Intel MKL and Mercury MathPack/SAL).

Low-pass FIR filter

The low-pass filter (FIR) function was further optimized to use the Intel 
AVX2 FMA (fused-multiply-add) and permute operations.

Dot product

The dot product function was also optimized to use AVX2 FMA. This 
improved QRD and weight application.

Test system
As mentioned in the introduction, STAP could be implemented using FP-
GAs, GPUs or CPUs. This paper discusses STAP on CPUs and specifically 
Intel server-class processors.

The measurement presented here is based on a high-performance Has-
well dual-server Intel E5-2648L v3 running at 1.8 GHz (used on Mercury 
OpenVPX board Ensemble HDS6603). The memory consists of four banks 
of DDR4-2133 per processor (eight in total) with a total of 136 GB/s. 
The memory speed is far beyond a typical embedded system and allows 
efficient usage of the many cores, for both compute bound and memory 
bound applications.

Two 12-core processors are interconnected with dual QPI with a total of 
38 GB/s bi-directional (76 GB/s total). With the dual QPI interconnect-
ing both processors which runs in SMP they appear from a software 
development as well as performance point of view as a single 24-core 
processor.

For external communication the processors share six x8 PCIe3 operating 
at 8G resulting in 48 GB/s bi-directional (96 GB/s total) off-board data 
links. Two third of this (four x8 PCIe3) are dedicated to data input inter-
faces and other adjacent equipment such as recorder. Having separate 
data paths for data input/output, inter-board links and on-board links 
between processors further ensures the ability to keep the 24 cores oc-
cupied at all times.

Measured performance
The benchmark was run and the generated data was successfully vali-
dated. This section describes the achieved performance on the Xeon E 
(Intel E5-2648L v3).

Low pass filter (FIR)

Following previously described optimizations the achieved performance 
for FIR filter reached 25.5 Gflop/s per core. When combined with deci-
mation and other miscellaneous house-keeping code, the higher level 
function performance is reduced somewhat. This is clarified in the fol-
lowing sections.

FFT

In-place Interleaved Complex Fourier Transform (FFT) performance has been 
measured using Intel IPP and MKL libraries. The performance is shown in 
Figure 5. The data was placed in cache before timing.
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Figure 5. In-place Interleaved Complex Fourier Transform (FFT) perfor-
mance

The most suitable library depends on the FFT size. For in-place inter-
leaved complex Fourier transform, Intel MKL was used.

QR-Decomposition

Using the QR decomposition benchmark described in MITRE RT_STAP [1] 
the following timing per core for various QRD sizes have been measured.
Table 5. QR decomposition performance

Matrix size
Avg processing time 

(msec)
Gflops/s

32x16 0.008 8.1

64x32 0.037 14.3

96x48 0.105 16.9

128x64 0.233 18.0

160x80 0.560 14.6

192x96 0.946 15.0

64x16 0.011 11.4

128x32 0.072 14.5

192x48 0.180 19.7

256x64 0.522 16.1

320x80 1.026 16.0

384x96 1.786 15.9

The code used during testing is based on a loop of discrete calls to lower 
level functions such as a vector conjugate inner dot product function 
cidotprx. This is a relatively low level function operating at separate vec-
tors and it is optimized. The usage of optimized functions explains the 
relatively high performance. In order to further improve the advantage of 
using the server-class architecture a more monolithic function operating 
directly on the matrix, ideally for the complete QRD might provide further 
improvements.

Third-order Doppler-factored STAP – single core

The third-order Doppler-factored STAP is an application level STAP 
benchmark involving 22 channels. The result of running this on a single 
core is presented in Table 6. 

Weights computation (QRD) clearly requires the most computations 
(83.4%) and even with the use of an optimized library the core spends 
66.5% of its time here. 

With a single core, the total processing time of 102.2 milliseconds is lon-
ger than the 32.5 millisecond per CPI. To perform the STAP calculations 
before the next CPI arrives, add more cores and perform calculations in 
parallel (next section).

The listed total operation rate of 12.57 Gflop/s is somewhat misleading. 
It is calculated as total run time / Nr float operations per CPI. The total 
run time includes other processing such as short to float cast, misc. pre-
processing, misc. processing and corner-turn. The operations per CPI for 
such processing have not been accounted for (only its time). This means 
that the actual overall operation rate is somewhat higher. 

Third-order Doppler-factored STAP – four cores

If we run the third-order Doppler-factored STAP benchmark with four 
cores working in parallel we reach below the CPI time and thereby meet 
the benchmark requirements. The measured timing for running with four 
cores in parallel (using MPI) is shown in Table 7. 
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Functional block Function
Nr float operations 

per CPI
Nr float operations 

of total [%]
Operation rate 

required [Gflop/s]

Single core 
measured 
time [s]

% of total 
time

Single core operation 
rate [Gflop/s]

Pre-processing

Short to float cast    0.0031 3.0%

Demodulation to 
baseband

5,406,720 0.4% 0.17 0.002 2.0% 2.71

Low-pass filter (FIR) and 
decimation

72,990,720 5.7% 2.26 0.00393 3.8% 18.58

Pulse compression
array calibration

92,995,584 7.2% 2.88 0.00296 2.9% 31.42

Misc. pre-processing    0.0006 0.6%

Adaptive
processing

Doppler processing 21,626,880 1.7% 0.67 0.00075 0.7% 28.84

QRD 1,070,530,560 83.4% 33.19 0.06797 66.5% 15.76

Solve for adaptive 
weights 

4,460,544 0.3% 0.14 0.00388 3.8% 1.15

Weights application 16,220,160 1.3% 0.50 0.00171 1.7% 9.49

Other

Corner-turn 2x    0.00455 4.5%

Misc. processing    0.01077 10.5%

Total run time 1,284,231,168 100% 39.82 0.10221 100.0% 12.57

Table 6. Third-order Doppler-factored STAP - single core
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As per Table 7 the measured time to run the STAP benchmark on four 
cores is 28.29 ms which is below the CPI time of 32.5 ms. Utilizing four 
cores provides an overall 45.4 Gflop/s which is also above the required 
39.82 Gflop/s.  

 Measured scalability
Using MPI the STAP benchmark has been scaled to run on varying 
number of cores. The measured aggregate operation rate is shown 
in Figure 6.

Figure 6. Measured scalability

The measured operation rate per core is more clearly illustrated in 
Figure 7.

Figure 7. Measured scalability Gflops/s per core

Most parts of the application have a reasonable scaling, some scale fac-
tors are more efficient than others which are application and data size 
specific. Due to latency induced by data movement, using also the 2nd 
processor (cores 13-24) reduces the per-core performance. The dual QPI 
interlinking the processors helps reducing such effect. Since the problem 
size used herein can be solved using four cores, scaling this to 24 cores 
(as shown in this section) is more academic than of practical use. A more 
demanding application (e.g. with larger data sizes) would scale more 
evenly over multiple processors. Instead of splitting a single QRD over 
many cores it would be more efficient to run multiple QRDs in parallel on 
groups of cores. A STAP application might be partitioned differently from 
this benchmark resulting in improved scalability.

The level of scalability depends on the type of computation and parti-
tion. As shown below, for compute bound problems (small FFT sizes) 
the scalability of algorithms is straight-forward but for larger FFT sizes 
the problem becomes memory bound (data does not fit in cache). This is 
shown in Figure 8.

Figure 8. Measured Gflop/s 12 Vs 24 cores

Figure 8 shows both Xeon D and E performance. The difference between 
these is discussed in the next section.

Functional block Function
Nr float operations 

per CPI
Nr float operations 

of total [%]
Operation rate 

required [Gflop/s]

Four cores 
measured 
time [s]

% of total 
time

Four cores operation 
rate [Gflop/s]

Pre-processing

Short to float cast    0.00085 3.0%

Demodulation to 
baseband

5,406,720 0.4% 0.17 0.00055 1.9% 9.84

Low-pass filter (FIR) and 
decimation

72,990,720 5.7% 2.26 0.00105 3.7% 69.52

Pulse compression
array calibration

92,995,584 7.2% 2.88 0.00085 3.0% 109.41

Misc. pre-processing    0.00015 0.5% 0

Adaptive
processing

Doppler processing 21,626,880 1.7% 0.67 0.0002 0.7% 108.14

QRD 1,070,530,560 83.4% 33.19 0.01731 61.2% 61.85

Solve for adaptive 
weights 

4,460,544 0.3% 0.14 0.00097 3.4% 4.6

Weights application 16,220,160 1.3% 0.50 0.00041 1.4% 39.57

Other

Corner-turn 2x    0.00314 11.1%

Misc. processing    0.0028 9.9%

Total run time 1,284,231,168 100% 39.82 0.02829 100.0% 45.4

Table 7. Third-order factored-Doppler STAP - four cores
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Xeon D Vs E
As of today there are embedded products available with dual server-
class Xeon D-1540/1557 and Intel Xeon E5-2648L v3. An illustration of a 
dual Xeon D versus dual Xeon E architecture is shown in Figure 9 

Figure 9. Dual Xeon D and E architecture comparison

Figure 9 has two Xeon processors on each board. Both these processors 
have AVX2 arithmetic units.

The Xeon E design is derived from a multi-socket high-performance serv-
er computer. With its double memory bandwidth and high-speed proces-
sor interlink it is clearly designed for higher performance applications. It 
can also run in SMP mode (one common OS running on both CPUs) with 
all 24 cores sharing a common high-speed memory.

The eight-core Xeon D-1540 has 12 MB cache and the twelve-core Xeon 
D-1557 has 18 MB cache. The Xeon E-2648Lv3 with 12 cores has 30 MB 
cache. The cache size is critical for many applications so this is a major 
difference. A larger cache allows a processor to work on larger data sets 
and cache size can be even more important when more cores share a 
common cache. The Xeon D has two memory channels per processor and 
the Xeon E has four. The result is that the Xeon D memory speed is half 
of Xeon E. The effect of the difference in cache size and memory speed 
is illustrated in the Figure 10 (FFT with Intel IPP).

 

Figure 10. In-place interleaved complex FFT

If the Xeon D was run at the same clock speed of 1.8 GHz as the Xeon E 
(E5-2648Lv3) and running small FFT size, the performance per core would 
be similar. As the performance for larger sizes is limited by the cache size 
and memory bandwidth (memory bound), for larger FFT sizes, using more 
cores or increase core clock speed would not improve performance.

In order to further clarify this, the diagram below shows the performance 
for scenarios where we run FFT on 6 and 12 cores simultaneously, all 
competing for the same cache and memory resources.

Figure 11. Measured Gflop/s, 6 Vs 12 cores

As shown in Figure 11, for memory bound functions, six Xeon E cores can 
outperform twelve Xeon D cores.

If we run the full STAP benchmark on both Xeon D and E we will see 
that up to four cores, Xeon D can keep up with Xeon E. This is shown in 
Figure 12.

Figure 12. STAP timing Xeon D Vs E

While  compute bound functions run in isolation they perform similarly 
but the cost of partitioning the full benchmark across cores and the 
resulting distributed corner-turns result in the Xeon D struggling. As a 
result, when using all twelve cores, it takes more than twice the time to 
run this benchmark on Xeon D. However, it seems likely that the original 
software can be redesigned to improve scalability for both Xeon D and E.

The Xeon D’s lack of a direct high-speed interlink between the proces-
sors (QPI) results in a scalability between on-board processors to be the 
same as scaling across boards (over the fabric). On a single board the 
dual Xeon D are interconnected with 16x PCIe3 at 8 Gbps resulting in 16 
GB/s compared with Xeon E’s dual QPI with 38 GB/s BW. The result is 
that moving data between on-board processors will take twice the time.

In applications demanding higher memory speed and inter-processor 
communication the Xeon E’s larger cache, double memory speed and 
inter-processor QPI links will come into even greater importance.

Such applications might be ground based 100+ channel radar systems 
with higher pulse repetition frequency (PRF) implementing an ordered 
statistics CFAR-algorithm operating in all three dimensions (range, pulse 
and channel). In such system, whilst computation complexity could be 
somewhat reduced, data movement is more demanding.

Another application where memory speed and data movement is impor-
tant is higher resolution Synthetic Aperture Radar (SAR).

The analysis of using server-class processors in such applications could 
be a subject for further studies. 
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Summary and conclusions
QR-Decomposition requires a majority of the processing in STAP radar. As 
shown in this paper reaching in the order of 15 Gflop/s per core for QRD is 
something we can expect from an Intel server computer running optimized 
math libraries. It should also be possible to optimize this further.

STAP radar will however need to do more than QRD and therefore we have 
studied the performance of running a somewhat more complete STAP ap-
plication based on MITRE RT_STAP [1]. Given the presented data it appears 
realistic to expect at least 10 Gflop/s per core overall STAP computations 
reaching to 30 GFlop/s per core for some functions (e.g. FFT).

With the used STAP example application we would need about four cores 
to process the incoming data stream of 22 channels in real-time. One may 
ask how many channels can be processed in a slot or even in a 19” rack. 
However since real world sampling speed can be higher and other factors 
come into play (e.g. increased processing order, degree of freedom, etc.) 
making such general statement is not practical.

What we can envision is how much STAP processing can be done in a 
compact 6U embedded chassis. With OpenVPX technology it is practical 
to build a compact rugged deployed embedded system in the region of 
10 slots. Typically in a deployed system there will be some slots for data 
input. There will also be a switch card as well as need for spare slots. A 
typical deployed system might therefore have around five server processor 
boards. If each board has 24 cores then we would have a 120-core STAP 
computer. Assuming we reach between 10-20 Gflop/s per core overall then 
this would allow us to reach at least 1.2 Tflops/s and possibly extending up 
to 2.4 Tflops/s of STAP processing per 19” rack.

We have compared Xeon D Vs E and measured that for the same core count 
and clock speed, compute bound functions run in isolation perform simi-
larly. But even with a compute bound application such as STAP there will 
be data movement such as corner-turn which takes time. Xeon E has twice 
the memory speed which reduces time for memory data movement by up 
to 50%. It also has nearly double the cache size which to a greater extent 
enables the cores to work from cache instead of memory. As shown herein 
this makes scaling across cores more straight-forward. The effect of cache 
size and memory speed can also be greatly enhanced in memory-bound ap-
plications requiring more data movement. The higher performance of Xeon 
E allows us to reduce the number of boards and this reduces system size, 
weight (lower-SWaP) and complexity.

As described herein commercial embedded server-class processing tech-
nology is ready to make 3rd order STAP and beyond a reality in deployed 
systems.
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CPU Central Processor Unit
DOF Direction Of Freedom
FFT Fast Fourier Transformation
FMA Fused Multiply Add (Intel)
FPGA Field Programmable Gate Array
GPU Graphical Processing Unit
MTI Moving Target Indicator
OS Operating System
QPI Quick Path Interconnect (Intel)
SMP Symmetric Multi-Processing
STAP Space Time Adaptive Processing


