
w
w

w
.m

rc
y.

co
m

W
H

IT
E

PA
P

ER

Xeon-D Vs Xeon-E for embedded radar applications
Comparing server-class devices for Space Time Adaptive Processing applications

Introduction
For airborne radars, longer, higher and further means more processing power in smaller, rugged efficient packages.
The best implementations of ANSI/VITA 65 (OpenVPX), the de facto embedded military open system compute ar-
chitecture meets the ruggedness and compact requirements, and adds scalability. Especially when implemented as
VPX-REDI (VITA 48) even greater ruggedness and increased functional density is possible, as is the ease of two-level
maintenance (2LM). Processing power is achieved by leveraging the best commercial Intel Xeon data-center compute
capability. Xeon processors are available as either “mobile” devices (Xeon D) which are designed for laptop appli-
cations which require lower power, less cores, lower memory bandwidth and less connectivity. Xeon E processors
power data-centers and cloud facilities worldwide. Such processors typically have larger core counts, faster memory
and increased connectivity such as QPI enabling efficient use of multiple on-board processor and SMP.

Embedding Xeon E devices in to military applications requires rugged packaging, reliable/efficient cooling, fast and
unrestricted pipes and banks of memory. Mercury’s proven (fourth generation) OpenVPX Xeon E powered blades have
these enabling technologies and are known as the Ensemble® HDS (High Density Server) series of blades., How do
these embedded blades with data-center performance usher in the next generation of radar systems? In the past
Space Time Adaptive Processing (STAP) was a challenge for embedded systems. This white paper studies STAP
processing approaches, using Xeon D and E processors for comparison.

JONAS LARSSON
PRINCIPAL SYSTEMS APPLICATION ENGINEER
APRIL 2017

w
w

w
.m

rc
y.

co
m

W
H

IT
E

PA
P

ER

2

Figure 2. Pre-processing

The parameters used in this section are introduced in Table 1.
Table 1. Pre-processing parameters

Pre-processing parameters

Nr channels L

Nr pulses per CPI PCPI

Nr pulses per Doppler processing block PD

Samples per pulse before decimation N

Decimation factor D

Samples per pulse after decimation ND

FIR filter length used anti-aliasing in video-to-I/Q Ka

FFT size (power of 2) used by overlap-save fast con-
volution

R

Convolution length in calibration and pulse compres-
sion

Rcp

Number of blocks in the overlap-save fast convolution
method B = ND / Rcp

B

Doppler FFT Size (power of 2) K

The number of operations required for the pre-processing is listed in
Table 2
Table 2. Pre-processing number of operations

Nr Operations

Video-to-IQ

Demodulation to baseband L * PCPI * 2N

Low-pass filter (anti-aliasing using
FIR filter) and decimate sample

rate

L * PCPI * 3Ka*ND

Array
calibration &

pulse
compression

Array calibration and pulse com-
pression total

L * PCPI * B * (10R * log2R
+ 6R)

Forward FFT to get into frequency
domain

L * PCPI * B * (5R * log2R)

Multiplications in frequency
domain

L * PCPI * B * 6R

Inverse FFT to return to time
domain

L * PCPI * B * (5R * log2R)

Doppler processing L * ND * (5K * log2K + 2PD)

Array
Calibration

Frequency

Pulse Compression

Video to IQ

Decimate
Sample RateLowpass Filter

Demodulate
to baseband

Doppler Filter

Space Time Adaptive Processing (STAP)
STAP radar systems adaptively compute weights to reduce the effect of
clutter and jamming. Targets in motion relative to the radar will pres-
ent a Doppler shift in the returned radar echo. In typical moving target
indicator (MTI) radars, this is taken advantage of. However, if the radar
platform is in motion, such as in airborne radar systems, then also the
ground will present a Doppler shift. In such environments it can be chal-
lenging to separate ground clutter from targets. Fortunately, such ground
clutter typically provides a similar Doppler shift for the area adjacent to
the area being examined. By constructing a filter which will take such an
adjacent area into consideration, a STAP system can reduce the effect of
ground clutter. With the use of an antenna array and adaptive weights,
the STAP system can also adapt the radar antenna pattern by placing
nulls in the direction of jammers.

Computing the adaptive weights in real-time is an intensive process;
computational burden can be reduced by selecting computations most
suitable for the processing technology. Even if the most suitable ap-
proach is selected for a high-performance multi-channels STAP system,
the processing demand can be substantial. As such, previous generation
compute solutions were unable to meet size, weight and power (SWAP)
requirements, making STAP difficult to deploy.

Next generation processor, GPU and FPGA technology enables the de-
ployment of effective STAP systems in airborne platforms. While mul-
tiple technologies can be used, the technology can greatly affect the
programmability, scalability and life-cycle management of the platform.

This white paper analyses Xeon server-class processors in airborne
STAP systems. It is not an evaluation of current techniques in STAP sci-
ence and practice. Instead it is an evaluation of new compute technolo-
gies that target this class of processing, while comparing mobile (D) and
data-center (E) Xeon processing capabilities.

STAP algorithm
Figure 1 illustrates the STAP processing blocks. This STAP algorithm is
further described by Cain et al.

Beam Mb
• • •
Beam 2

Channel

Pulse

Time

CPI

Range

Doppler

Channel

CPI

Form Beams
(range/doppler)

Matrix
Factorization

Back
Substitution
W * R = s

Steering Vectors, s

Beam 1

W = R-1s

Weights

Range

D
op

pl
er

Pre-processing Doppler Filter

Figure 1. STAP overview

The initial stage with pre-processing typically includes Video-to-IQ con-
version, array calibration and pulse compression followed by Doppler
filtering. The Video-to-IQ conversion usually includes demodulation to
baseband, low-pass filtering and decimation of sample rate. These pro-
cessing blocks are illustrated in Figure 2.

Adaptive weight processing
The most demanding processing stage in STAP is to calculate and apply
the adaptive weights vectors. The weight vectors are then used to form
beams in beam forming. This process is described in Figure 3.

Beam Mb
• • •
Beam 2

Range

Doppler

Channel

CPI

Form Beams
(range/doppler)

Matrix
Factorization

Back
Substitution
W * R = s

Steering Vectors, s

Beam 1

W = R-1s

Weights

Range

D
op

pl
er

Doppler Filter

Figure 3. Adaptive processing

Calculating such adaptive weights may be performed in several ways.
The two most commonly used methods to solve this equation in STAP
applications are Cholesky and QR decomposition.

Cholesky method
With the Cholesky matrix method we first solve the following equation,

Mcov * Vweight = Vsteer
We define Mcov = Z * ZH and compute Mcov
Solving system Vweight = Mcov -1 * Vsteer determines the upper tri-
angular R. We then use forward and backward substitution to compute
weight vector.

In the Cholesky approach, the data samples (i.e. voltages) are multiplied
together to form the elements of the covariance matrix. The units of
these elements are 'power', and thus the numerical dynamic range of
the elements (in dB) are double that of the elements in the original data.
As a result, especially in the presence of interference signals having
a high interference-to-noise ratio, the resulting covariance matrix can
rapidly become ill-conditioned requiring double-precision arithmetic to
obtain an accurate decomposition. The QR decomposition approach de-
scribed in the following section avoids this problem by working directly
with the data in the 'voltage' domain, rather than with the 'power' ele-
ments of the covariance matrix.

QR decomposition method
With the QR decomposition method you would apply the QR decompo-
sition directly to the complex data matrix to obtain the desired upper
triangular factor matrix R. In this method we decompose space-time
matrix MxN for some range cells. We then use forward and backward
substitution to compute weight vector. Once we have the weight vector
we apply it using vector-matrix multiplication.

A drawback with the QR decomposition method is that it requires nearly
twice as much computation as Cholesky but given the finite-precision
arithmetic inherent in all digital processors, the QR decomposition meth-
od is numerically more stable than the Cholesky method.

3

Using the QR decomposition method the number of operations required
for weights computation and application is described in Table 3. The
parameters used are K Doppler FFT size (power of 2), M independent
non-overlapping range blocks, L channels, Q processing order, and NR

contiguous range cells per weight computation.
Table 3. Adaptive processing

Functional Block Functional Block Nr Operations

Adaptive
processing

Weights computation K * M * 8 * [L*Q]²*(NR+1)

Weights application K * M * (8 * L* Q * NR)

A first-order Doppler-factored STAP (Q = 1) represents a first-order post-
Doppler adaptive DPCA algorithm. This is a basic post-Doppler STAP for
clutter and interference suppression. It can be effective but since it only
operates in a single temporal degree of freedom (DOF) it is not a true
STAP. The processing demand for this algorithm is modest.

A third-order Doppler-factored STAP provides performance approaching
a fully adaptive system. This approach efficiently supresses clutter and
interference. The processing demand for this algorithm can be high, es-
pecially for a high channel count. This is where we will focus this study.

STAP parameters and processing requirements
In order to better understand the computational load related to these
algorithms this section analyses the effect of some of these. For this
exercise we have assumed the parameters listed in Table 4.
Table 4. STAP Parameters

Parameter Name Value

IF sampling rate [MHz] Fs 5

Time per pulse, TP = TCPI / PCPI [us] TP 504

Time per CPI TCPI = 32.25 ms [ms] TCPI 32.25

Range = C / (2*PRF) [km] Range 75

Pulses per second, PRF = 1/TP [kHz] PRF 1984

Samples per CPI, NCPI = PCPI * N NCPI 122,880

Nr channels L 22

Nr pulses per CPI PCPI 64

Nr pulses per Doppler processing block PD 64

Samples per pulse before decimation N 1920

Decimation factor D 4

Samples per pulse after decimation ND 480

FIR filter length used in video-to-I/Q Ka 36

FIR filter length used in array calibration Kc 3

FIR filter length used in pulse compression Kp 63

Convolution length in calibration and pulse
compression

Rcp 192

FFT size (power of 2) used by overlap-save fast
convolution

R 256

Number of blocks in the overlap-save fast
convolution method B = ND / Rcp

B 3

Doppler FFT Size (power of 2) K 64

Number of independent non-overlapping range
blocks

M 2

Nr contiguous range cells per weight
computation

NR 240

Processing order Q 3

w
w

w
.m

rc
y.

co
m

W
H

IT
E

PA
P

ER These are similar to the parameters used by Cain et al. [1]. As shown in
previous sections the amount of processing required to perform STAP in
real-time is highly affected by parameters such as sampling speed and
Degree of Freedom (DOF). Since this study focus on a third-order Dop-
pler-factored STAP with 22 channels (L) and processor order (Q adjacent
Doppler bins) set to 3 we have a degree of freedom (DOF=L*Q) of 66. As
previously discussed the number of operations required to adaptively
compute weights increases with DOF2 which means that a doubling of
either channels (L) or processing order (Q) will quadruple the operation
rate.

The following figures illustrate the effect of the number of channels on
the various processing blocks. Here we can see that weight computation
dramatically increases with the number of channels to process.

Figure 4. Processing versus channels

As illustrated in the Figure 4, for STAP processing it is typical that weight
computation forms a majority of the overall processing requirements.
Therefore in order to assess the usability of a particular platform it
seems logical to focus a STAP feasibility study on the efficiency to per-
form weight computation.

If we perform weight computation using QRD method then this involves
decomposition of space-time matric MxN for some range cells (e.g. 240).
We then use QR decomposition to give the upper triangular R. Finally, we
use forward and backward substitution to compute the weight vector.

Depending on the optimised implementation the data might need to be
rearranged to suite the underlying architecture. For instance an opti-
mised Gram-Schmidt QR decomposition requires the transpose of the
matrix.

Benchmark development
The STAP benchmark used herein is based on the MITRE RT_STAP
benchmark [1]. The benchmark was originally developed twenty years
ago, to run on processor technology available at the time of the bench-
mark. Since then, technology has moved forward. Despite evolving hard-
ware all the involved APIs such as math library (Mercury MathPack) and
data movement (MPI) has been maintained during this time. As a result
of this the porting activity has mainly involved setting up the build envi-
ronment and to build against the latest libraries for the selected proces-
sor type.

Optimisations
Function mapping file

Using a function-by-function selection mapping file the most efficient
function was selected from multiple optimized math libraries (e.g. Intel
IPP, Intel MKL and Mercury MathPack/SAL).

Low-pass FIR filter

The low-pass filter (FIR) function was further optimized to use the Intel
AVX2 FMA (fused-multiply-add) and permute operations.

Dot product

The dot product function was also optimized to use AVX2 FMA. This
improved QRD and weight application.

Test system
As mentioned in the introduction, STAP could be implemented using FP-
GAs, GPUs or CPUs. This paper discusses STAP on CPUs and specifically
Intel server-class processors.

The measurement presented here is based on a high-performance Has-
well dual-server Intel E5-2648L v3 running at 1.8 GHz (used on Mercury
OpenVPX board Ensemble HDS6603). The memory consists of four banks
of DDR4-2133 per processor (eight in total) with a total of 136 GB/s.
The memory speed is far beyond a typical embedded system and allows
efficient usage of the many cores, for both compute bound and memory
bound applications.

Two 12-core processors are interconnected with dual QPI with a total of
38 GB/s bi-directional (76 GB/s total). With the dual QPI interconnect-
ing both processors which runs in SMP they appear from a software
development as well as performance point of view as a single 24-core
processor.

For external communication the processors share six x8 PCIe3 operating
at 8G resulting in 48 GB/s bi-directional (96 GB/s total) off-board data
links. Two third of this (four x8 PCIe3) are dedicated to data input inter-
faces and other adjacent equipment such as recorder. Having separate
data paths for data input/output, inter-board links and on-board links
between processors further ensures the ability to keep the 24 cores oc-
cupied at all times.

Measured performance
The benchmark was run and the generated data was successfully vali-
dated. This section describes the achieved performance on the Xeon E
(Intel E5-2648L v3).

Low pass filter (FIR)

Following previously described optimizations the achieved performance
for FIR filter reached 25.5 Gflop/s per core. When combined with deci-
mation and other miscellaneous house-keeping code, the higher level
function performance is reduced somewhat. This is clarified in the fol-
lowing sections.

FFT

In-place Interleaved Complex Fourier Transform (FFT) performance has been
measured using Intel IPP and MKL libraries. The performance is shown in
Figure 5. The data was placed in cache before timing.

4

Figure 5. In-place Interleaved Complex Fourier Transform (FFT) perfor-
mance

The most suitable library depends on the FFT size. For in-place inter-
leaved complex Fourier transform, Intel MKL was used.

QR-Decomposition

Using the QR decomposition benchmark described in MITRE RT_STAP [1]
the following timing per core for various QRD sizes have been measured.
Table 5. QR decomposition performance

Matrix size
Avg processing time

(msec)
Gflops/s

32x16 0.008 8.1

64x32 0.037 14.3

96x48 0.105 16.9

128x64 0.233 18.0

160x80 0.560 14.6

192x96 0.946 15.0

64x16 0.011 11.4

128x32 0.072 14.5

192x48 0.180 19.7

256x64 0.522 16.1

320x80 1.026 16.0

384x96 1.786 15.9

The code used during testing is based on a loop of discrete calls to lower
level functions such as a vector conjugate inner dot product function
cidotprx. This is a relatively low level function operating at separate vec-
tors and it is optimized. The usage of optimized functions explains the
relatively high performance. In order to further improve the advantage of
using the server-class architecture a more monolithic function operating
directly on the matrix, ideally for the complete QRD might provide further
improvements.

Third-order Doppler-factored STAP – single core

The third-order Doppler-factored STAP is an application level STAP
benchmark involving 22 channels. The result of running this on a single
core is presented in Table 6.

Weights computation (QRD) clearly requires the most computations
(83.4%) and even with the use of an optimized library the core spends
66.5% of its time here.

With a single core, the total processing time of 102.2 milliseconds is lon-
ger than the 32.5 millisecond per CPI. To perform the STAP calculations
before the next CPI arrives, add more cores and perform calculations in
parallel (next section).

The listed total operation rate of 12.57 Gflop/s is somewhat misleading.
It is calculated as total run time / Nr float operations per CPI. The total
run time includes other processing such as short to float cast, misc. pre-
processing, misc. processing and corner-turn. The operations per CPI for
such processing have not been accounted for (only its time). This means
that the actual overall operation rate is somewhat higher.

Third-order Doppler-factored STAP – four cores

If we run the third-order Doppler-factored STAP benchmark with four
cores working in parallel we reach below the CPI time and thereby meet
the benchmark requirements. The measured timing for running with four
cores in parallel (using MPI) is shown in Table 7.

5

Functional block Function
Nr float operations

per CPI
Nr float operations

of total [%]
Operation rate

required [Gflop/s]

Single core
measured
time [s]

% of total
time

Single core operation
rate [Gflop/s]

Pre-processing

Short to float cast 0.0031 3.0%

Demodulation to
baseband

5,406,720 0.4% 0.17 0.002 2.0% 2.71

Low-pass filter (FIR) and
decimation

72,990,720 5.7% 2.26 0.00393 3.8% 18.58

Pulse compression
array calibration

92,995,584 7.2% 2.88 0.00296 2.9% 31.42

Misc. pre-processing 0.0006 0.6%

Adaptive
processing

Doppler processing 21,626,880 1.7% 0.67 0.00075 0.7% 28.84

QRD 1,070,530,560 83.4% 33.19 0.06797 66.5% 15.76

Solve for adaptive
weights

4,460,544 0.3% 0.14 0.00388 3.8% 1.15

Weights application 16,220,160 1.3% 0.50 0.00171 1.7% 9.49

Other

Corner-turn 2x 0.00455 4.5%

Misc. processing 0.01077 10.5%

Total run time 1,284,231,168 100% 39.82 0.10221 100.0% 12.57

Table 6. Third-order Doppler-factored STAP - single core

w
w

w
.m

rc
y.

co
m

W
H

IT
E

PA
P

ER

6

As per Table 7 the measured time to run the STAP benchmark on four
cores is 28.29 ms which is below the CPI time of 32.5 ms. Utilizing four
cores provides an overall 45.4 Gflop/s which is also above the required
39.82 Gflop/s.

 Measured scalability
Using MPI the STAP benchmark has been scaled to run on varying
number of cores. The measured aggregate operation rate is shown
in Figure 6.

Figure 6. Measured scalability

The measured operation rate per core is more clearly illustrated in
Figure 7.

Figure 7. Measured scalability Gflops/s per core

Most parts of the application have a reasonable scaling, some scale fac-
tors are more efficient than others which are application and data size
specific. Due to latency induced by data movement, using also the 2nd
processor (cores 13-24) reduces the per-core performance. The dual QPI
interlinking the processors helps reducing such effect. Since the problem
size used herein can be solved using four cores, scaling this to 24 cores
(as shown in this section) is more academic than of practical use. A more
demanding application (e.g. with larger data sizes) would scale more
evenly over multiple processors. Instead of splitting a single QRD over
many cores it would be more efficient to run multiple QRDs in parallel on
groups of cores. A STAP application might be partitioned differently from
this benchmark resulting in improved scalability.

The level of scalability depends on the type of computation and parti-
tion. As shown below, for compute bound problems (small FFT sizes)
the scalability of algorithms is straight-forward but for larger FFT sizes
the problem becomes memory bound (data does not fit in cache). This is
shown in Figure 8.

Figure 8. Measured Gflop/s 12 Vs 24 cores

Figure 8 shows both Xeon D and E performance. The difference between
these is discussed in the next section.

Functional block Function
Nr float operations

per CPI
Nr float operations

of total [%]
Operation rate

required [Gflop/s]

Four cores
measured
time [s]

% of total
time

Four cores operation
rate [Gflop/s]

Pre-processing

Short to float cast 0.00085 3.0%

Demodulation to
baseband

5,406,720 0.4% 0.17 0.00055 1.9% 9.84

Low-pass filter (FIR) and
decimation

72,990,720 5.7% 2.26 0.00105 3.7% 69.52

Pulse compression
array calibration

92,995,584 7.2% 2.88 0.00085 3.0% 109.41

Misc. pre-processing 0.00015 0.5% 0

Adaptive
processing

Doppler processing 21,626,880 1.7% 0.67 0.0002 0.7% 108.14

QRD 1,070,530,560 83.4% 33.19 0.01731 61.2% 61.85

Solve for adaptive
weights

4,460,544 0.3% 0.14 0.00097 3.4% 4.6

Weights application 16,220,160 1.3% 0.50 0.00041 1.4% 39.57

Other

Corner-turn 2x 0.00314 11.1%

Misc. processing 0.0028 9.9%

Total run time 1,284,231,168 100% 39.82 0.02829 100.0% 45.4

Table 7. Third-order factored-Doppler STAP - four cores

7

Xeon D Vs E
As of today there are embedded products available with dual server-
class Xeon D-1540/1557 and Intel Xeon E5-2648L v3. An illustration of a
dual Xeon D versus dual Xeon E architecture is shown in Figure 9

Figure 9. Dual Xeon D and E architecture comparison

Figure 9 has two Xeon processors on each board. Both these processors
have AVX2 arithmetic units.

The Xeon E design is derived from a multi-socket high-performance serv-
er computer. With its double memory bandwidth and high-speed proces-
sor interlink it is clearly designed for higher performance applications. It
can also run in SMP mode (one common OS running on both CPUs) with
all 24 cores sharing a common high-speed memory.

The eight-core Xeon D-1540 has 12 MB cache and the twelve-core Xeon
D-1557 has 18 MB cache. The Xeon E-2648Lv3 with 12 cores has 30 MB
cache. The cache size is critical for many applications so this is a major
difference. A larger cache allows a processor to work on larger data sets
and cache size can be even more important when more cores share a
common cache. The Xeon D has two memory channels per processor and
the Xeon E has four. The result is that the Xeon D memory speed is half
of Xeon E. The effect of the difference in cache size and memory speed
is illustrated in the Figure 10 (FFT with Intel IPP).

Figure 10. In-place interleaved complex FFT

If the Xeon D was run at the same clock speed of 1.8 GHz as the Xeon E
(E5-2648Lv3) and running small FFT size, the performance per core would
be similar. As the performance for larger sizes is limited by the cache size
and memory bandwidth (memory bound), for larger FFT sizes, using more
cores or increase core clock speed would not improve performance.

In order to further clarify this, the diagram below shows the performance
for scenarios where we run FFT on 6 and 12 cores simultaneously, all
competing for the same cache and memory resources.

Figure 11. Measured Gflop/s, 6 Vs 12 cores

As shown in Figure 11, for memory bound functions, six Xeon E cores can
outperform twelve Xeon D cores.

If we run the full STAP benchmark on both Xeon D and E we will see
that up to four cores, Xeon D can keep up with Xeon E. This is shown in
Figure 12.

Figure 12. STAP timing Xeon D Vs E

While compute bound functions run in isolation they perform similarly
but the cost of partitioning the full benchmark across cores and the
resulting distributed corner-turns result in the Xeon D struggling. As a
result, when using all twelve cores, it takes more than twice the time to
run this benchmark on Xeon D. However, it seems likely that the original
software can be redesigned to improve scalability for both Xeon D and E.

The Xeon D’s lack of a direct high-speed interlink between the proces-
sors (QPI) results in a scalability between on-board processors to be the
same as scaling across boards (over the fabric). On a single board the
dual Xeon D are interconnected with 16x PCIe3 at 8 Gbps resulting in 16
GB/s compared with Xeon E’s dual QPI with 38 GB/s BW. The result is
that moving data between on-board processors will take twice the time.

In applications demanding higher memory speed and inter-processor
communication the Xeon E’s larger cache, double memory speed and
inter-processor QPI links will come into even greater importance.

Such applications might be ground based 100+ channel radar systems
with higher pulse repetition frequency (PRF) implementing an ordered
statistics CFAR-algorithm operating in all three dimensions (range, pulse
and channel). In such system, whilst computation complexity could be
somewhat reduced, data movement is more demanding.

Another application where memory speed and data movement is impor-
tant is higher resolution Synthetic Aperture Radar (SAR).

The analysis of using server-class processors in such applications could
be a subject for further studies.

w
w

w
.m

rcy.com

INNOVATION THAT MATTERS ™

Corporate Headquarters
50 Minuteman Road • Andover, MA 01810 USA
(978) 967-1401 • (866) 627-6951 • Fax (978) 256-3599

europe - MerCury systeMs, Ltd
Unit 1 - Easter Park, Benyon Road, Silchester, Reading
RG7 2PQ United Kingdom
+ 44 0 1189 702050 • Fax + 44 0 1189 702321

Mercury Systems and Innovation That Matters are trademarks of Mercury Systems, Inc. Other products
mentioned may be trademarks or registered trademarks of their respective holders. Mercury Systems, Inc.
believes this information is accurate as of its publication date and is not responsible for any inadvertent
errors. The information contained herein is subject to change without notice.

Copyright © 2017 Mercury Systems, Inc. 3314.00E-0417-wp-STAP

Summary and conclusions
QR-Decomposition requires a majority of the processing in STAP radar. As
shown in this paper reaching in the order of 15 Gflop/s per core for QRD is
something we can expect from an Intel server computer running optimized
math libraries. It should also be possible to optimize this further.

STAP radar will however need to do more than QRD and therefore we have
studied the performance of running a somewhat more complete STAP ap-
plication based on MITRE RT_STAP [1]. Given the presented data it appears
realistic to expect at least 10 Gflop/s per core overall STAP computations
reaching to 30 GFlop/s per core for some functions (e.g. FFT).

With the used STAP example application we would need about four cores
to process the incoming data stream of 22 channels in real-time. One may
ask how many channels can be processed in a slot or even in a 19” rack.
However since real world sampling speed can be higher and other factors
come into play (e.g. increased processing order, degree of freedom, etc.)
making such general statement is not practical.

What we can envision is how much STAP processing can be done in a
compact 6U embedded chassis. With OpenVPX technology it is practical
to build a compact rugged deployed embedded system in the region of
10 slots. Typically in a deployed system there will be some slots for data
input. There will also be a switch card as well as need for spare slots. A
typical deployed system might therefore have around five server processor
boards. If each board has 24 cores then we would have a 120-core STAP
computer. Assuming we reach between 10-20 Gflop/s per core overall then
this would allow us to reach at least 1.2 Tflops/s and possibly extending up
to 2.4 Tflops/s of STAP processing per 19” rack.

We have compared Xeon D Vs E and measured that for the same core count
and clock speed, compute bound functions run in isolation perform simi-
larly. But even with a compute bound application such as STAP there will
be data movement such as corner-turn which takes time. Xeon E has twice
the memory speed which reduces time for memory data movement by up
to 50%. It also has nearly double the cache size which to a greater extent
enables the cores to work from cache instead of memory. As shown herein
this makes scaling across cores more straight-forward. The effect of cache
size and memory speed can also be greatly enhanced in memory-bound ap-
plications requiring more data movement. The higher performance of Xeon
E allows us to reduce the number of boards and this reduces system size,
weight (lower-SWaP) and complexity.

As described herein commercial embedded server-class processing tech-
nology is ready to make 3rd order STAP and beyond a reality in deployed
systems.

Table of Acronyms

References
[1] K.C. Cain, J. A. Torres, and R.T. Williams, “RT_STAP: Real-time space-time adaptive processing
benchmark”, MITRE Technical Report, The MITRE Corporation, Center for Air Force C3 Systems,
Bedford, MA, USA, 1997.

About the Author
Jonas Larsson is a Principal Systems Application engineer for Mercury Systems. Mr Lars-
son has 18 years of experience architecting, implementing and promoting high-performance
embedded system solutions. Mr Larsson earned his bachelor of science (BSc) degree in
electrical engineering from Chalmers University of technology in Sweden and his master of
science (MSc) degree in Network centred computing from University of Reading in England.

CPU Central Processor Unit
DOF Direction Of Freedom
FFT Fast Fourier Transformation
FMA Fused Multiply Add (Intel)
FPGA Field Programmable Gate Array
GPU Graphical Processing Unit
MTI Moving Target Indicator
OS Operating System
QPI Quick Path Interconnect (Intel)
SMP Symmetric Multi-Processing
STAP Space Time Adaptive Processing

