
Optimal Multicore Processing for 
Safety-Critical Applications

Introduction
For many years, Moore’s Law advances in microproces-
sors were delivered primarily as increases in processor 
frequency. Ever since single-core frequencies started to 
peak in the 2000s, multicore solutions have delivered 
the latest performance increases for general computing.  

Safety-critical and Multi-Level-Security (MLS) applica-
tions have been slow to utilize multicore architectures 
due to the complexity of validating and certifying soft-
ware and hardware architectures. Of principal concern 
is how an application running on one core can interfere 
with an application running on another core, thereby  
affecting the determinism, quality of service, and 
ultimately safety. Yet, if the concerns over multicore 
operation can be addressed, the benefits of smaller size, 
lower power, and increased performance can be realized.  

To help with the safety-critical implementation of multi-
core processors, several standards have been updated 
to address multicore issues. ARINC 653 addresses space 
and time partitioning of real-time operating systems 
(RTOS) for safety-critical avionics applications.  A 2015 
update, ARINC 653 Part 1 Supplement 4, addresses 
multicore operation, including a requirement to support 
Bound Multi-Processing (BMP). Supplement 5 continues 
that requirement The Future Airborne Capability Environ-
ment (FACE™) technical standard version 3.0 from the 
Open Group addresses 
multicore support by 
requiring compliance 
with Supplement 4. The 
Certification Authority 
Software Team (CAST), in-
cluding participants from the FAA, EASA, and TCCA, has 
published a position paper with guidance on certification 
for multicore systems called CAST-32A. Together, these 
documents provide the requirements for successfully 
using multicore solutions for even the highest design  
assurance level (DAL A) of RTCA/DO-178C  and  
EUROCAE/ED-12C “Software Considerations in Airborne 
Systems and Equipment Certification.”
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each application running at a given time. The memory 
management unit (MMU) in modern processors enforces 
that memory allocation. Time partitioning divides a fixed 
time interval, called a Major Frame, into a sequence of fixed 
sub-intervals referred to as partition time windows. Each 
application is allocated one or more partition time windows, 
with the length and number of windows being factors of 
the application’s worst-case execution time (WCET) and 
required repetition rate. The operating system (OS) ensures 
that each application is provided access to the processor‘s 
core during its allocated time. Applying these safety-critical 
techniques to multicore processors, however, requires over-
coming several complicated challenges, the most difficult 
being interference between cores via the shared resources.

Interference Between Cores
In a multicore processor, each processing core has limited 
dedicated resources. All multicore hardware architectures 
include some shared resources such as memory control-
lers, DDR memory, I/O, cache, and the internal fabric that 
connects them. 

When more than one core tries to concurrently access a 
given resource there is contention. As a result, a lower 
criticality application/partition could keep a higher criti-
cality application/partition from performing its intended 
function, such as causing a screen to freeze. For example, 
with multiple sources of interference from multiple cores, 
increases in WCET of over 12x have been observed in a 
quad-core system when cores only access DDR memory 

Benefits of Multicore
If utilizing multicore processors entails more effort and 
more risk, why bother? The right multicore software archi-
tecture can yield a host of benefits:

• Higher Throughput—Multi-threaded applications 
running on multiple cores scale in throughput. Multiple 
single-threaded applications can run faster by each 
running in their own core concurrently. Optimal core 
utilization enables throughput to scale linearly with the 
number of cores.

• Better SWaP—Effective use of multiple cores enables 
consolidating applications previously running on sep-
arate single-core processors to run on separate cores 
in a single multicore processor. This consolidation 
can mean reduced size, weight, and power (SWaP). 
For airborne systems, lower SWaP translates to lower 
costs and longer flight time. To achieve the desired 
SWaP results, optimal core utilization is required (i.e. 
minimal idle time on each core), in a deterministic and 
high-assurance manner.

• Room for Future Growth—The performance 
potential of multicore processors allows for new re-
quirements and applications to be added in the future. 
How easy it is to either relocate existing applications 
to a different core or add new applications to available 
spare capacity on one or more cores will depend on 
the flexibility of the operating system architecture and 
the breadth of tools available for recertification. 

• Longer Supply Availability—Most single-core 
chips are obsolete or close to obsolete, and part 
obsolescence dictates that only multicore processors 
are available. Moving to a multicore chip allows for 
choosing a processor at the start of its supply life. 

Challenges for Multicore in  
Safety-Critical Applications
In a single-core processor, multiple safety-critical appli-
cations may execute on the same processor by robustly 
partitioning the memory space and processor time be-
tween the hosted applications. Memory space partitioning 
dedicates a non-overlapping portion of the memory to 
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Figure 1: Separate processor cores (gray) share many  
resources (green) ranging from the interconnect to  

memory and I/O. 
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over the interconnect (i.e. no I/O access). Due to shared 
resource arbitration and scheduling algorithms in the DDR 
controller fairness is not guaranteed and interference 
impacts are often non-linear. In fact, tests have revealed a 
single interfering core increasing WCET on another core by 
a factor of 8x.

The main certification guidance for addressing interference 
in multicore processors comes in the form of a joint position 
paper developed primarily by the Federal Aviation Adminis-
tration (FAA) and European Aviation Safety Agency (EASA) 
called CAST-32A. For interference, that document covers 
managing the interference channels and verifying the use 
of shared resources. See the sidebar for a full description of 
the two primary interference objectives.

One approach to addressing multicore interference is for 
the system integrator to create a special use-case based 
on testing and analysis of WCET for every application/par-
tition and their worst case utilization of shared resources. 
Special use-case solutions can lead to vendor lock and 
re-verification of the entire system with the change of any 
one application/partition. Special use-case integration is a 
significant barrier to the implementation and sustainment 
of an integrated modular avionics (IMA) system. Without 
operating system mechanisms and tools to support the 
mitigation of interference, sustainment costs and risks 
are very high. Changes to any one application will require 
complete WCET re-verification activities for all integrated 
applications. 

A better approach is to have the operating system manage 
the interference based on the availability of DAL A runtime 
mechanisms, libraries, and tools.This approach gives the 
system integrator an effective, flexible, and agile solution 
that addresses CAST-32A objectives. Such a general 
solution simplifies the addition of new applications without 
major changes to the system architecture, reduces re-veri-
fication activities, and in most cases eliminates dependen-
cies on the original system integrator.

Porting Single-Core Software Designs  
to Multicore
Although porting an existing safety system to a multicore 
platform provides more computing resources, the worst 
case execution time of a given application can increase due 

to longer latency to access shared resources or inference 
from accesses by other cores. New analysis is needed to 
determine if other resources such as memory, memory 
controllers, and inter-core communications can become the 
new bottleneck. Even if every resource runs faster, changes 
in relative performance can often cause an application to 
stop working or behave in a non-deterministic manner.

The level of difficulty of the port will depend on a number of 
factors such as: 

• whether the constituent applications were designed to 
be multi-threaded

• whether there are underlying assumptions about the 
order of execution of the application time partitions

• differences in communication delays between cores 
versus within a core 

• the amount of margin between the WCET and the 
available processing time

• whether the multicore approach requires separating 
I/O into a separate single core as an interference 
mitigation approach, thereby requiring re-architecting 
of most applications 

CAST-32A Objectives for Interference 
Mitigation

MCP_Resource_Usage_3: The applicant has identified 
the interference channels that could permit interfer-
ence to affect the software applications hosted on the 
MCP cores, and has verified the applicant’s chosen 
means of mitigation of the interference. 

MCP_Resource_Usage_4: The applicant has identified 
the available resources of the MCP and of its intercon-
nect in the intended final configuration, has allocated 
the resources of the MCP to the software applications 
hosted on the MCP and has verified that the demands 
for the resources of the MCP and of the interconnect 
do not exceed the available resources when all the 
hosted software is executing on the target processor. 

NOTE: The need to use Worst Case scenarios is implicit 
in this objective.  
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Effective Utilization of Multicore Resources
In order to achieve the throughput and SWaP benefits of 
multicore solutions, the software architecture needs to 
support high utilization of the available processor cores. 
This requires support for full multicore features, ranging 
from enabling concurrent operation of cores (versus 
available cores being forced into an idle state or held in 
reset at startup) to providing a mechanism for deterministic 
load balancing. In general, the more flexible the software 
multi-processing architecture is, the more tools the system 
architect has to achieve high utilization. This topic is 
specifically discussed in ARINC 653 Part 1 Supplement 4 
section 2.2.1 as multiple processes (i.e. threads) within a 
partition executing concurrently across multiple cores and 
as concurrent partition execution.

Multicore for Integrated Modular Avionics
Integrated Modular Avionics (IMA) combines many avionics 
processing functions onto a set of shared processing 
resources. This integrated architecture depends on the 
application software being portable across a set of common 
hardware modules. To efficiently use multicore processors 
for IMA, the different avionics functions are required to 
be assignable to processor cores in a flexible manner. But 
without specific multicore operating system capabilities, the 
flexibility previously associated with single-core IMA solu-
tions is eliminated, and IMA systems based on multicore 
processors become a serious integration and sustainment 
risk. For example, IMA system architects and designers may 
make their initial schedule and core assignments based 
on utilization estimates, often derived from data sheets or 

DO-254 Certifiable Multicore Hardware  
Complements DO-178C Multicore Software

By Curtiss–Wright Defense Solutions 

Full safety certification of the aircraft requires DO-254 
certification for the hardware in addition to DO-178 for 
the software. Current and emerging aerospace require-
ments demand hardware processing capability that can 
support multiple functions and applications with mixed 
levels of safety criticality. These requirements, along 
with intense computational needs and architectures that 
include multicore processors, highlight a very clear and 
pressing need for RTOS technology capable of preventing 
performance degradation and shared resource contention.

Hardware architectures that include multicore processing 
technology must be deliberately designed to set the num-
ber of active cores and the execution frequency, to specify 
which MCP peripherals are activated, and to determine 
the hardware support for shared memory and cache. In 
safety-critical applications, a multicore processor must be 
carefully selected and its host board architected, based 
on several key factors, including a processor’s service 
history, availability of manufacturing and quality data, I/O 
capabilities, performance levels, and power consumption. 

Take, for example, the NXP® QorIQ® T2080 Power Archi-
tecture® processor on the Curtiss-Wright VPX3-152 
 

safety-certifiable single board computer (SBC). The 
quad-core T2080 is capable of meeting the performance 
requirements of many DAL A applications at a relatively 
low level of power consumption, and will be logging DAL 
A flight hours beginning early in 2019. When compared 
against its smaller-package variant, the T2081, the T2080 
also provides additional capability that makes it a more 
complete and certifiable solution. Despite offering similar 
power levels, a key differentiator for the T2080 is its 16 
available SerDes lanes (compared to the T2081’s eight), 
which effectively doubles the number of functions that 
can be directly serviced from the processor. This simpli-
fies the overall board design and certification effort.  For 
systems with even more demanding SWaP constraints, 
Curtiss-Wright also offers a DO-254-certifiable SBC fea-
turing NXP’s Layerscape 1043A Arm® processor, which is 
designed specifically for providing power-efficient 64-bit 
processing at a low power consumption level.

The full capability of our carefully selected multicore 
processors is realized when complemented by an RTOS 
that enables system designers and integrators to utilize all 
available compute power from the processor’s cores in a 
high-assurance manner. To that end, all of our safety- 
critical multicore SBCs support INTEGRITY®-178 tuMP™, 
which provides deterministic, user-defined core and 
scheduling assignments that can ensure the performance 
capabilities of multicore hardware are fully achieved.
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limited empirical results. As software enters into the inte-
gration phase, which is late in the development cycle and 
costly to change, the following occurs: (1) more features are 
added to the software applications, (2) hardware does not 
perform as expected, and (3) the original 50% spare utiliza-
tion drops to 10% utilization. As a result, the initial partition 
schedule and core assignments need massive rework. 

In order to avoid these hidden pitfalls, the underlying 
multicore operating system needs to support the following: 
(1) ease of application migration across cores, (2) ability to 
easily define new or multiple Major Frame schedules, and 
(3) ease of adding and/or removing cores assignments for a 
new or existing application.

Safe and Secure OS Virtualization in IMA and 
Open Mission Systems
In an effort to expand the benefits of IMA in a multicore en-
vironment, some avionics architectures may require support 
for Linux, Android, or Windows so that application-specific 
software can run in a virtualized Guest OS partition. This 
is often associated with non-critical and non-real-time 
applications. In addition to core assignment flexibility, such 
a virtualization environment has a critical dependency upon 
the deterministic use of the shared processor resources. 

Similarly, Open Mission Systems (OMS) seeks to utilize 
a standard Open Compute Environment (OCE) based on 
enterprise operating systems and enterprise processor 
architecture. Because security is a concern with enter-
prise-level solutions, virtualization is typically employed in 
an effort to isolate applications from each other.

One of the biggest challenges of a virtualized avionics 
environment is providing a robust security environment. Al-
though traditional hypervisors attempt to isolate virtualized 
Guest OSes from each other and system resources, that 
security is only as good as the underlying hypervisor. Once 
a security flaw is exploited, an application in one Guest 
OS can gain access to data in another Guest OS. An often 
overlooked type of security vulnerability can come through 
denial of service or even degraded service if the hypervisor 
does not provide mechanisms to enforce the fair use of the 
shared multicore resources.

One answer to those security concerns is to utilize a 
virtualization layer in user space running on top of a 
separation kernel. That approach minimizes the kernel size 
while enforcing application isolation and permitting only 
explicitly authorized communication flow. If the applications 
will be operating at multiple levels of security (MLS), then a 
high assurance kernel is required, and it needs to be able 
to guarantee information flows between the Guest OSes 
and their applications through an MLS guard/downgrader. 
This can be challenging, as some separation kernels do 
not support running an MLS application like a guard/
downgrader, thus limiting their ability to meet cross-domain 
requirements.

In addition to that security advantage, running the virtualiza-
tion layer on top of the separation kernel instead of inside a 
bare-metal hypervisor also has the performance advantage 
for real-time applications.  Only the non-real-time appli-
cations running in the Guest OS will pay the virtualization 
performance penalty.  The real-time applications can run 
directly on the seaparation kernel acting as the Host RTOS, 
thereby realizing the full real-time performance.

Software Multi-Processing  
Architectures
Like multi-processor systems, the software architecture 
on multicore processors can be classified by the amount 
of sharing and coordination among cores. The simplest 
software architecture for a multicore-based system is 
Asymmetric Multi-Processing (AMP), where each core runs 
independently, each with its own OS or hypervisor/Guest 
OS pair. Each core runs a different application with little or 
no meaningful coordination between the cores in terms of 
scheduling. This decoupling can result in underutilization 
due to lack of load balancing, difficulty mitigating shared 
resource contention, and the inability to perform coordinat-
ed activity across cores such as required for comprehensive 
built-in test.

The modern alternative is Symmetric Multi-Processing 
(SMP), where a single OS controls all the resources, 
including which application threads are run on which cores. 
Processes and threads can be coordinated across cores, 
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and utilization can be maximized. This architecture is easy 
to program because all cores access resources “symmetri-
cally,” freeing the OS to assign any thread to any core. 

Not knowing which threads will be running on which cores 
is a major challenge and a risk for deterministic operation 
in safety-critical systems. To address this, CAST-32A refer-
ences the use of Bound Multi-Processing (BMP). BMP is an 
enhanced and restricted form of SMP that statically binds 
an application’s tasks to specific cores, allowing the system 
architect to tightly control the concurrent operation of mul-
tiple cores. BMP directly follows the multicore requirement 
in ARINC 653 Supplements 4 and 5 section 2.2.1, which 
states: “Multiple processes within a partition scheduled to 
execute concurrently on different processor cores.”

INTEGRITY-178 tuMP Multicore  
Solution
The INTEGRITY-178 tuMP high-assurance RTOS is the 
leading multicore RTOS for safety-critical applications. 
INTEGRITY-178 tuMP complies with ARINC 653 Part 1 Sup-
plements 4 and 5, which requires BMP capability in ARINC 
653 partitions. The RTOS also complies with ARINC 653 
Part 2 Multiple Processor Cores Extensions, which requires 
SMP support in ARINC 653 partitions. INTEGRITY-178 tuMP 
was the first RTOS certified to the FACE technical standard 
version 3.0, and remains the only RTOS certified for all 
three major multicore processor architectures— Arm, 
Intel®, and Power Architecture.   

INTEGRITY-178 tuMP’s Time-variant Unified Multi-Pro-
cessing (tuMP) approach provides maximum flexibility 
for porting, extending, and optimizing safety-critical and 
security-critical applications to a multicore architecture. 
It starts with a time-partitioned kernel running across all 
cores that allows any combination of AMP, SMP, and BMP 
applications to be bound to a core or groups of cores called 
affinity groups. It then adds time-variance so that partition 
time windows do not need to be aligned across cores.

The INTEGRITY-178 tuMP operating system’s added 
capability to change core assignments, as required for IMA, 
can be used selectively to give some of the applications 
for a given partition time window more processing time 
and resources, or it can be used to run a whole new set 

of applications. For example, a critical image processing 
function may have certain modes of operation where the 
complexity of the image data being processed requires 
additional cores but the deadline remains the same.  

The capabilities of INTEGRITY-178 tuMP enable multiple 
independent safety- and security-critical applications to 
execute on a multicore operating environment in a predict-
able, bounded, and application-independent manner. The 

SMP App SMP App

Affinity Group D

Shared Resources and System Interconnect

SMP App

INTEGRITY-178 tuMP OS

Core 0 Core 1 Core 2 Core 3

Figure 2: Example of mixed AMP and SMP/BMP in  
INTEGRITY-178 tuMP on a multicore processor.

Affinity  
Group A

Affinity  
Group B

Affinity  
Group C

Shared Resources and System Interconnect

INTEGRITY-178 tuMP OS

AMP App AMP App SMP App

Core 0 Core 1 Core 2 Core 3

Figure 3: Example of full SMP mode in INTEGRITY-178 tuMP.
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SMP App SMP App SMP App

Shared Resources and System Interconnect

tuMP partition-enforcing scheduling method results in a 
unified OS that provides practical time-variant scheduling of 
AMP, BMP, and SMP applications simultaneously. 

INTEGRITY-178 tuMP Examples
With a unified multi-processing architecture, INTEGRITY-178 
tuMP enables the use of AMP, BMP, SMP or any combi-
nation of them in the same processor. In the first example 
(Figure 2), there is one application bound to core 0 and 
another application bound to core 1, so they are operating 
in AMP mode. A third application is bound to cores 2 and 
3, therefore its threads can go to either core in SMP mode 
or they could be bound to a specific core in BMP mode via 
task affinity. Because there is no overlap in core assign-
ments, they all can execute simultaneously.

In the second example (Figure 3), there are three appli-
cations, each of which can execute threads on any of the 
four cores. This full SMP mode allows the operating system 
to perform deterministic load balancing according to the 
overall task priorities, resulting in optimal performance. 

Supporting multiple applications executing on one or more 
cores in the same partition time window enables support 
of event-driven applications such as client-server, where 

the clients’ requests are immediately serviced by a server 
executing in the same time partition window (instead of 
being delayed to another partition time window). Likewise,  
interrupt-driven applications are immediately serviced with 
this architecture.  

The third example (Figure 4) shows the flexibility of  
INTEGRITY-178 tuMP. Here the application configuration 
from the first example runs in the first partition time 
window, and then the application configuration from Figure 
3 runs in the second partition time window.

One use of this flexibility is to enable built-in test (BIT) while 
using a virtualized/Guest OS. Typically the Guest OS, such 
as Linux or Windows, runs on a dedicated core consum-
ing all of the core’s processing time and resources. The 
continuous BIT suite, however, needs to run on all the cores 
at the same time in order to coordinate the testing of all 
the cores and shared resources. Both requirements can be 
accommodated using INTEGRITY-178 tuMP by having the 
BIT application assigned to all cores in a separate partition 
time window.

These same techniques can be used to plan for future ex-
pansion. By leaving one core unused and one partition time 

Figure 4: The time-variant capability of INTEGRITY-178 tuMP allows different bindings of  
applications to cores in different partition time windows.
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window unused across all cores, an existing application can 
grow in either direction or both. A new application can slide 
into the unused core for one or more time windows, or can 
use one or more cores in the spare time window.

This ability to assign applications across cores and time  
windows maximizes flexibility to port existing applications, 
add new capabilities to meet future needs, and to adapt 
designs to meet certification requirements.

Interference Monitoring and Mitigation
As mentioned earlier, multicore processor architectures 
include several shared resources such as memory, cache, 
I/O, and the interconnect that connects the cores to the 
other resources. Contention for these shared resources 
can create interference between cores, even when there 
is no explicit data or control flow between applications on 
different cores. These interference channels can cause 
non-deterministic behavior in critical software applications. 

INTEGRITY-178 tuMP includes a Bandwidth Allocation 
and Monitoring (BAM) capability to observe interference 
channels and mitigate them. Based upon more than 60 
staff-years of research and development into multicore 
interference analysis and mitigation strategies, BAM mon-
itors and enforces the allocation of bandwidth to shared 
resources for each of the cores. Green Hills has imple-
mented an internal mechanism for INTEGRITY-178 tuMP 
bandwidth allocation and monitoring that uniquely uses 
an extremely small time quantum in order to enforce the 
cores’ use of shared multicore resources as opposed to the 
typical approach using high-level fault detection. The BAM 
mechanism expects the obvious: that applications do NOT 
have a fixed bandwidth utilization curve by default, but BAM 
enforces a fixed bandwidth utilization curve for them.  

The system architect decides how much bandwidth to 
allocate to each core based on the functional requirements 
of the applications or their design assurance levels. When 
applications on a particular core reach the threshold band-
width for a given BAM time quantum, that core is cut off 
from consuming shared resources until the next BAM time 
quantum. Using this mechanism, a DAL-A application run-
ning on core 0 can be allocated a set amount of resources, 
such as 60% of the total bandwidth, while the other 3 cores 

could be allocated only 15%, 15%, and 10% respectively. 
BAM is developed to DO-178 DAL A objectives, and it 
allows integrators to mitigate interference issues.

Setting the proper bandwidth allocation requires analysis 
and testing of the application. To aid in that analysis, Green 
Hills Software provides interference and DMA generating 
libraries and a bandwidth reporting library. The interference 
and DMA generating libraries are tailored to each processor 
architecture and contain hundreds of interference profiles 
to simulate interference beyond what is found in typical 
applications. Running the interference and DMA generating 
libraries on all cores not used by a particular application 
concurrently with the application execution provides the 
new multicore worst case execution timing (WCET). 

The bandwidth reporting library uses the interference and 
DMA generating libraries to get a measured picture of the 
total amount of bandwidth available after accounting for 
the interference. Knowing the total bandwidth available will 
aid in setting the bandwidth allocation thresholds in BAM. 
The bandwidth reporting library runs the interference and 
DMA generating libraries across a configurable number 
of cores concurrently. Specific subsets of the hundreds of 
interference profiles can be selected in order to tailor the 
evaluation more closely to the expected applications, and 
custom interference profiles can be created. The available 
bandwidth will depend not only on the processor model but 
also the memory type, clock speed, configuration registers, 
and which interference profiles were selected to approxi-
mate the final application configuration.

Example Bandwidth Allocations

Core 0 Core 1 Core 2 Core 3

60

40

20

80

0

Figure 5: Example bandwidth allocations set and enforced 
using BAM.
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Case Study: Critical Airborne Systems Based on 
Multicore Processors

by CMC Electronics

CMC Electronics provides smart displays and processing 
computers for airborne applications. Our aircraft OEMs 
and system integrators have demanding requirements for 
the next generation of smart platforms: critical systems 
must 1) follow open architecture principles, 2) be ca-
pable of hosting software applications developed to the 
highest assurance levels, 3) provide sufficient growth 
capability, and 4) operate in harsh environments at high 
temperatures.

To meet these challenges, we introduced the MFD-3068 
Smart Multi-Function Display and the PU-3000 series of 
Avionics computers, CMC’s 3rd generation of Smart  
Displays and Processing Computers. Both systems 
leverage our next-generation of MOSArt™ (Modular 
Open System Architecture) middleware and a multicore 
processor supported by a high integrity operating system. 
MOSArt was founded on non-proprietary industry stan-
dards for the partitioning of applications (ARINC 653). In 
selecting an operating system it was clear that it must 

enable our critical systems to achieve the throughput 
and hardware consolidation benefits available from a 
multicore processor. The operating system’s software 
architecture must also be capable of meeting the open 
systems requirements for multicore systems as defined in 
ARINC-653 Supplement 4. Equally important from a sys-
tem certification, growth and sustainment point of view, 
the operating system’s features and capabilities must 
enable EAV to mitigate, on a continuing basis, the risks 
associated with multicore processors in critical systems. 

The selection of a multicore processor offered longer term 
availability while providing significant flexibility in meeting 
the processing throughput and room for growth desired 
by our customers. To capitalize on the potential of this 
architecture and after a very thorough and extensive trade 
study, we selected Green Hills Software’s INTEGRITY-178 
tuMP Multicore Real-Time Operating System (RTOS) 
because it met both our short and long term throughput 
goals without jeopardizing our safety certification require-
ments. Its Unified Multi-Processing approach, including 
the usage of Affinity Groups, provides the flexibility and 
integrity necessary to meet these challenges.

Taken together, the interference and DMA generating librar-
ies, bandwidth reporting library, and BAM runtime mecha-
nisms provide the tools necessary for a system integrator 
to determine multicore worst case execution times, mitigate 
interference, and certify multicore systems. These tools 
provide a complete solution to mitigating multicore inter-
ference. These interference mitigating capabilities provided 
by Green Hills Software reduce certification risk and enable 
faster time-to-market by simplifying the verification and 
analysis activities. 

BAM reduces risk and simplifies the development, integra-
tion, deployment and sustainment of critical systems. BAM 
enables optimal core utilization in critical systems yielding 
superior SWaP reduction and Spare Computing Capacity. 
This bandwidth allocation and monitoring capability is 
essential for IMA OEMs and developers to meet the IMA 
requirement that applications are independently modifiable. 

The capability to independently modify applications is 
necessary to meet the high-level IMA goals of providing 
cost-effective upgrade paths and introducing new oper-
ational capabilities without retesting and reverifying the 
entire system.

Security: The Final Frontier
Today’s safety-critical systems face a variety of threats from 
both unintentional and malicious actors. If the software 
is changed maliciously or even unintentionally from the 
certified configuration, it is no longer safe. Bottom-line, 
a system that is not secure puts safety at risk. Nor is it 
sufficient to have separate OS products with one being safe 
and another being secure, as the primary OS or hypervisor 
needs to be both safe and secure. Green Hills recognizes 
this requirement by building both safety and security into 
the same INTEGRITY-178 tuMP RTOS.  
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One proven approach for a Multiple Independent Levels 
of Security (MILs) operating system is to architect it as a 
separationb kernel. A separation kernel is intended to fully 
isolate multiple partitions and control the information flows 
between applications/partitions and external resources.  In 
part, that includes protection of all resources from unau-
thorized access, isolation of partitions except for explicitly 
allowed information flows, and a set of audit services. The 
result is that a separation kernel provides high-assurance 
partitioning and information flow control that satisfy the 
non-bypassable, evaluatable, always invoked, and tamper-
proof (NEAT) security policy attributes. 

In 2007, the Information Assurance Directorate of the U.S. 
National Security Agency (NSA) published the Separation 
Kernel Protection Profile (SKPP), a security requirements 
specification for separation kernels suitable to be used  
in the most hostile threat environments. In 2008,  
INTEGRITY-178 became the first and only operating system 
to be certified against the SKPP. That certification was to 
the highest Evaluation Assurance Level (EAL 6+) for general 
software products. Even though the SKPP has now been 

sunsetted, the evaluation criteria remain the strictest the 
industry has seen and is still specified by programs of 
record. INTEGRITY-178 tuMP continues to meet the SKPP’s 
rigorous set of functional and assurance requirements for 
those customers needing it.

Beyond the approval as a MILS separation kernel,  
INTEGRITY-178 tuMP provides a complete set of APIs that 
were also evaluated by the certification authority for use 
by Multi-Level Security (MLS) applications within a secure 
partition, e.g. an MLS guard, which is a fundamental 
requirement in a cross-domain system. Because both safety 
and security are designed into the same product, those 
secure APIs include support for multithreading, concurrent 
execution on multiple cores, and flexible core assignments 
at the configuration file level, all within the secure MLS 
environment. The unique bandwidth allocation and monitor-
ing capability in INTEGRITY-178 tuMP can be used to thwart 
denial-of-service attacks from compromised partitions/
applications resulting from the unintended or malicious use 
of the multicore processor’s shared resources.

NEAT Security Policy Attributes

The four main security attributes of a high-assurance separation kernel (i.e. security monitor):

Non-bypassable:  An application cannot bypass the security monitor.

Evaluatable:  The security monitor is modular, small in size, and sufficiently low in complexity to support  
 rigorous evaluation.

Always-invoked:  Each and every access and communication is checked by the security monitor.

Tamperproof:  The system prevents unauthorized changes to the security monitor code, configuration,  
 and data.
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Essential Multicore RTOS Requirements for Critical Airborne Systems

Time-Variant Unified Multicore 
Processing

Optimal core utilization in a high-assurance and deterministic  
manner resulting in maximum system throughput, lower system 
SWaP, and greater spare computing capacity

Shared Resources Bandwidth 
Enforcement

Bandwidth allocation and monitoring of shared multicore resources 
in order to mitigate the risk of interference from the shared  
resources and simplify the development, integration, deployment, 
and sustainment of critical systems

Independent Subsystem Decomposition The ability to assign one or more cores to applications and partition 
time windows independently of other subsystems

Multicore Standards Support Complete support for open standards addressing multicore  
processing, including ARINC 653 Part 1, Supplements 4/5 and  
FACE version 3.0

Secure Guest OS Virtualization Reduces certification burden of the hypervisor to the same level as 
its actual Guest OS application. Guest OS partitions are subject to 
the same Bandwidth Enforcement as the non-virtualized applica-
tions (eliminates risk of interference caused by Guest OS and its 
applications).

Tightly Integrated Development Tools A development environment tightly integrated with the high- 
assurance multicore RTOS that has a proven track record of  
success for C, C++, and Ada

Safety-Critical Middleware DAL A-compliant file system and networking components based on 
a client/server design – server resides in any core or partition and 
serves multiple clients at different safety levels
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