
Optimal Multicore Processing for
Safety-Critical Applications

Introduction
For many years, Moore’s Law advances in microproces-
sors were delivered primarily as increases in processor
frequency. Ever since single-core frequencies started to
peak in the 2000s, multicore solutions have delivered
the latest performance increases for general computing.

Safety-critical and Multi-Level-Security (MLS) applica-
tions have been slow to utilize multicore architectures
due to the complexity of validating and certifying soft-
ware and hardware architectures. Of principal concern
is how an application running on one core can interfere
with an application running on another core, thereby
affecting the determinism, quality of service, and
ultimately safety. Yet, if the concerns over multicore
operation can be addressed, the benefits of smaller size,
lower power, and increased performance can be realized.

To help with the safety-critical implementation of multi-
core processors, several standards have been updated
to address multicore issues. ARINC 653 addresses space
and time partitioning of real-time operating systems
(RTOS) for safety-critical avionics applications. A 2015
update, ARINC 653 Part 1 Supplement 4, addresses
multicore operation, including a requirement to support
Bound Multi-Processing (BMP). Supplement 5 continues
that requirement The Future Airborne Capability Environ-
ment (FACE™) technical standard version 3.0 from the
Open Group addresses
multicore support by
requiring compliance
with Supplement 4. The
Certification Authority
Software Team (CAST), in-
cluding participants from the FAA, EASA, and TCCA, has
published a position paper with guidance on certification
for multicore systems called CAST-32A. Together, these
documents provide the requirements for successfully
using multicore solutions for even the highest design
assurance level (DAL A) of RTCA/DO-178C and
EUROCAE/ED-12C “Software Considerations in Airborne
Systems and Equipment Certification.”

Contents

Introduction ..1

Benefits of Multicore ...2

Challenges for Multicore in
Safety-Critical Applications2
 Interference Between Cores ..2

 Porting Single-Core Software Designs to Multicore3

 Effective Utilization of Multicore Resources4

 Multicore for Integrated Modular Avionics4

 Safe and Secure OS Virtualization in IMA and Open
 Mission Systems ..5

Software Multi-Processing
Architectures ..5

INTEGRITY-178 tuMP Multicore
Solution ..6
 INTEGRITY-178 tuMP Examples6

 Interference Monitoring and Mitigation7

Security: The Final Frontier9

Essential Multicore RTOS Requirements for
Critical Airborne Systems11

each application running at a given time. The memory
management unit (MMU) in modern processors enforces
that memory allocation. Time partitioning divides a fixed
time interval, called a Major Frame, into a sequence of fixed
sub-intervals referred to as partition time windows. Each
application is allocated one or more partition time windows,
with the length and number of windows being factors of
the application’s worst-case execution time (WCET) and
required repetition rate. The operating system (OS) ensures
that each application is provided access to the processor‘s
core during its allocated time. Applying these safety-critical
techniques to multicore processors, however, requires over-
coming several complicated challenges, the most difficult
being interference between cores via the shared resources.

Interference Between Cores
In a multicore processor, each processing core has limited
dedicated resources. All multicore hardware architectures
include some shared resources such as memory control-
lers, DDR memory, I/O, cache, and the internal fabric that
connects them.

When more than one core tries to concurrently access a
given resource there is contention. As a result, a lower
criticality application/partition could keep a higher criti-
cality application/partition from performing its intended
function, such as causing a screen to freeze. For example,
with multiple sources of interference from multiple cores,
increases in WCET of over 12x have been observed in a
quad-core system when cores only access DDR memory

Benefits of Multicore
If utilizing multicore processors entails more effort and
more risk, why bother? The right multicore software archi-
tecture can yield a host of benefits:

• Higher Throughput—Multi-threaded applications
running on multiple cores scale in throughput. Multiple
single-threaded applications can run faster by each
running in their own core concurrently. Optimal core
utilization enables throughput to scale linearly with the
number of cores.

• Better SWaP—Effective use of multiple cores enables
consolidating applications previously running on sep-
arate single-core processors to run on separate cores
in a single multicore processor. This consolidation
can mean reduced size, weight, and power (SWaP).
For airborne systems, lower SWaP translates to lower
costs and longer flight time. To achieve the desired
SWaP results, optimal core utilization is required (i.e.
minimal idle time on each core), in a deterministic and
high-assurance manner.

• Room for Future Growth—The performance
potential of multicore processors allows for new re-
quirements and applications to be added in the future.
How easy it is to either relocate existing applications
to a different core or add new applications to available
spare capacity on one or more cores will depend on
the flexibility of the operating system architecture and
the breadth of tools available for recertification.

• Longer Supply Availability—Most single-core
chips are obsolete or close to obsolete, and part
obsolescence dictates that only multicore processors
are available. Moving to a multicore chip allows for
choosing a processor at the start of its supply life.

Challenges for Multicore in
Safety-Critical Applications
In a single-core processor, multiple safety-critical appli-
cations may execute on the same processor by robustly
partitioning the memory space and processor time be-
tween the hosted applications. Memory space partitioning
dedicates a non-overlapping portion of the memory to

Core 0 Shared
Cache

I/O

System Interconnect

Memory
Controller

DMA
Engine

Accelerators

Core 1 Core 2 Core 3

Figure 1: Separate processor cores (gray) share many
resources (green) ranging from the interconnect to

memory and I/O.

2

over the interconnect (i.e. no I/O access). Due to shared
resource arbitration and scheduling algorithms in the DDR
controller fairness is not guaranteed and interference
impacts are often non-linear. In fact, tests have revealed a
single interfering core increasing WCET on another core by
a factor of 8x.

The main certification guidance for addressing interference
in multicore processors comes in the form of a joint position
paper developed primarily by the Federal Aviation Adminis-
tration (FAA) and European Aviation Safety Agency (EASA)
called CAST-32A. For interference, that document covers
managing the interference channels and verifying the use
of shared resources. See the sidebar for a full description of
the two primary interference objectives.

One approach to addressing multicore interference is for
the system integrator to create a special use-case based
on testing and analysis of WCET for every application/par-
tition and their worst case utilization of shared resources.
Special use-case solutions can lead to vendor lock and
re-verification of the entire system with the change of any
one application/partition. Special use-case integration is a
significant barrier to the implementation and sustainment
of an integrated modular avionics (IMA) system. Without
operating system mechanisms and tools to support the
mitigation of interference, sustainment costs and risks
are very high. Changes to any one application will require
complete WCET re-verification activities for all integrated
applications.

A better approach is to have the operating system manage
the interference based on the availability of DAL A runtime
mechanisms, libraries, and tools.This approach gives the
system integrator an effective, flexible, and agile solution
that addresses CAST-32A objectives. Such a general
solution simplifies the addition of new applications without
major changes to the system architecture, reduces re-veri-
fication activities, and in most cases eliminates dependen-
cies on the original system integrator.

Porting Single-Core Software Designs
to Multicore
Although porting an existing safety system to a multicore
platform provides more computing resources, the worst
case execution time of a given application can increase due

to longer latency to access shared resources or inference
from accesses by other cores. New analysis is needed to
determine if other resources such as memory, memory
controllers, and inter-core communications can become the
new bottleneck. Even if every resource runs faster, changes
in relative performance can often cause an application to
stop working or behave in a non-deterministic manner.

The level of difficulty of the port will depend on a number of
factors such as:

• whether the constituent applications were designed to
be multi-threaded

• whether there are underlying assumptions about the
order of execution of the application time partitions

• differences in communication delays between cores
versus within a core

• the amount of margin between the WCET and the
available processing time

• whether the multicore approach requires separating
I/O into a separate single core as an interference
mitigation approach, thereby requiring re-architecting
of most applications

CAST-32A Objectives for Interference
Mitigation

MCP_Resource_Usage_3: The applicant has identified
the interference channels that could permit interfer-
ence to affect the software applications hosted on the
MCP cores, and has verified the applicant’s chosen
means of mitigation of the interference.

MCP_Resource_Usage_4: The applicant has identified
the available resources of the MCP and of its intercon-
nect in the intended final configuration, has allocated
the resources of the MCP to the software applications
hosted on the MCP and has verified that the demands
for the resources of the MCP and of the interconnect
do not exceed the available resources when all the
hosted software is executing on the target processor.

NOTE: The need to use Worst Case scenarios is implicit
in this objective.

3

Effective Utilization of Multicore Resources
In order to achieve the throughput and SWaP benefits of
multicore solutions, the software architecture needs to
support high utilization of the available processor cores.
This requires support for full multicore features, ranging
from enabling concurrent operation of cores (versus
available cores being forced into an idle state or held in
reset at startup) to providing a mechanism for deterministic
load balancing. In general, the more flexible the software
multi-processing architecture is, the more tools the system
architect has to achieve high utilization. This topic is
specifically discussed in ARINC 653 Part 1 Supplement 4
section 2.2.1 as multiple processes (i.e. threads) within a
partition executing concurrently across multiple cores and
as concurrent partition execution.

Multicore for Integrated Modular Avionics
Integrated Modular Avionics (IMA) combines many avionics
processing functions onto a set of shared processing
resources. This integrated architecture depends on the
application software being portable across a set of common
hardware modules. To efficiently use multicore processors
for IMA, the different avionics functions are required to
be assignable to processor cores in a flexible manner. But
without specific multicore operating system capabilities, the
flexibility previously associated with single-core IMA solu-
tions is eliminated, and IMA systems based on multicore
processors become a serious integration and sustainment
risk. For example, IMA system architects and designers may
make their initial schedule and core assignments based
on utilization estimates, often derived from data sheets or

DO-254 Certifiable Multicore Hardware
Complements DO-178C Multicore Software

By Curtiss–Wright Defense Solutions

Full safety certification of the aircraft requires DO-254
certification for the hardware in addition to DO-178 for
the software. Current and emerging aerospace require-
ments demand hardware processing capability that can
support multiple functions and applications with mixed
levels of safety criticality. These requirements, along
with intense computational needs and architectures that
include multicore processors, highlight a very clear and
pressing need for RTOS technology capable of preventing
performance degradation and shared resource contention.

Hardware architectures that include multicore processing
technology must be deliberately designed to set the num-
ber of active cores and the execution frequency, to specify
which MCP peripherals are activated, and to determine
the hardware support for shared memory and cache. In
safety-critical applications, a multicore processor must be
carefully selected and its host board architected, based
on several key factors, including a processor’s service
history, availability of manufacturing and quality data, I/O
capabilities, performance levels, and power consumption.

Take, for example, the NXP® QorIQ® T2080 Power Archi-
tecture® processor on the Curtiss-Wright VPX3-152

safety-certifiable single board computer (SBC). The
quad-core T2080 is capable of meeting the performance
requirements of many DAL A applications at a relatively
low level of power consumption, and will be logging DAL
A flight hours beginning early in 2019. When compared
against its smaller-package variant, the T2081, the T2080
also provides additional capability that makes it a more
complete and certifiable solution. Despite offering similar
power levels, a key differentiator for the T2080 is its 16
available SerDes lanes (compared to the T2081’s eight),
which effectively doubles the number of functions that
can be directly serviced from the processor. This simpli-
fies the overall board design and certification effort. For
systems with even more demanding SWaP constraints,
Curtiss-Wright also offers a DO-254-certifiable SBC fea-
turing NXP’s Layerscape 1043A Arm® processor, which is
designed specifically for providing power-efficient 64-bit
processing at a low power consumption level.

The full capability of our carefully selected multicore
processors is realized when complemented by an RTOS
that enables system designers and integrators to utilize all
available compute power from the processor’s cores in a
high-assurance manner. To that end, all of our safety-
critical multicore SBCs support INTEGRITY®-178 tuMP™,
which provides deterministic, user-defined core and
scheduling assignments that can ensure the performance
capabilities of multicore hardware are fully achieved.

4

limited empirical results. As software enters into the inte-
gration phase, which is late in the development cycle and
costly to change, the following occurs: (1) more features are
added to the software applications, (2) hardware does not
perform as expected, and (3) the original 50% spare utiliza-
tion drops to 10% utilization. As a result, the initial partition
schedule and core assignments need massive rework.

In order to avoid these hidden pitfalls, the underlying
multicore operating system needs to support the following:
(1) ease of application migration across cores, (2) ability to
easily define new or multiple Major Frame schedules, and
(3) ease of adding and/or removing cores assignments for a
new or existing application.

Safe and Secure OS Virtualization in IMA and
Open Mission Systems
In an effort to expand the benefits of IMA in a multicore en-
vironment, some avionics architectures may require support
for Linux, Android, or Windows so that application-specific
software can run in a virtualized Guest OS partition. This
is often associated with non-critical and non-real-time
applications. In addition to core assignment flexibility, such
a virtualization environment has a critical dependency upon
the deterministic use of the shared processor resources.

Similarly, Open Mission Systems (OMS) seeks to utilize
a standard Open Compute Environment (OCE) based on
enterprise operating systems and enterprise processor
architecture. Because security is a concern with enter-
prise-level solutions, virtualization is typically employed in
an effort to isolate applications from each other.

One of the biggest challenges of a virtualized avionics
environment is providing a robust security environment. Al-
though traditional hypervisors attempt to isolate virtualized
Guest OSes from each other and system resources, that
security is only as good as the underlying hypervisor. Once
a security flaw is exploited, an application in one Guest
OS can gain access to data in another Guest OS. An often
overlooked type of security vulnerability can come through
denial of service or even degraded service if the hypervisor
does not provide mechanisms to enforce the fair use of the
shared multicore resources.

One answer to those security concerns is to utilize a
virtualization layer in user space running on top of a
separation kernel. That approach minimizes the kernel size
while enforcing application isolation and permitting only
explicitly authorized communication flow. If the applications
will be operating at multiple levels of security (MLS), then a
high assurance kernel is required, and it needs to be able
to guarantee information flows between the Guest OSes
and their applications through an MLS guard/downgrader.
This can be challenging, as some separation kernels do
not support running an MLS application like a guard/
downgrader, thus limiting their ability to meet cross-domain
requirements.

In addition to that security advantage, running the virtualiza-
tion layer on top of the separation kernel instead of inside a
bare-metal hypervisor also has the performance advantage
for real-time applications. Only the non-real-time appli-
cations running in the Guest OS will pay the virtualization
performance penalty. The real-time applications can run
directly on the seaparation kernel acting as the Host RTOS,
thereby realizing the full real-time performance.

Software Multi-Processing
Architectures
Like multi-processor systems, the software architecture
on multicore processors can be classified by the amount
of sharing and coordination among cores. The simplest
software architecture for a multicore-based system is
Asymmetric Multi-Processing (AMP), where each core runs
independently, each with its own OS or hypervisor/Guest
OS pair. Each core runs a different application with little or
no meaningful coordination between the cores in terms of
scheduling. This decoupling can result in underutilization
due to lack of load balancing, difficulty mitigating shared
resource contention, and the inability to perform coordinat-
ed activity across cores such as required for comprehensive
built-in test.

The modern alternative is Symmetric Multi-Processing
(SMP), where a single OS controls all the resources,
including which application threads are run on which cores.
Processes and threads can be coordinated across cores,

5

and utilization can be maximized. This architecture is easy
to program because all cores access resources “symmetri-
cally,” freeing the OS to assign any thread to any core.

Not knowing which threads will be running on which cores
is a major challenge and a risk for deterministic operation
in safety-critical systems. To address this, CAST-32A refer-
ences the use of Bound Multi-Processing (BMP). BMP is an
enhanced and restricted form of SMP that statically binds
an application’s tasks to specific cores, allowing the system
architect to tightly control the concurrent operation of mul-
tiple cores. BMP directly follows the multicore requirement
in ARINC 653 Supplements 4 and 5 section 2.2.1, which
states: “Multiple processes within a partition scheduled to
execute concurrently on different processor cores.”

INTEGRITY-178 tuMP Multicore
Solution
The INTEGRITY-178 tuMP high-assurance RTOS is the
leading multicore RTOS for safety-critical applications.
INTEGRITY-178 tuMP complies with ARINC 653 Part 1 Sup-
plements 4 and 5, which requires BMP capability in ARINC
653 partitions. The RTOS also complies with ARINC 653
Part 2 Multiple Processor Cores Extensions, which requires
SMP support in ARINC 653 partitions. INTEGRITY-178 tuMP
was the first RTOS certified to the FACE technical standard
version 3.0, and remains the only RTOS certified for all
three major multicore processor architectures— Arm,
Intel®, and Power Architecture.

INTEGRITY-178 tuMP’s Time-variant Unified Multi-Pro-
cessing (tuMP) approach provides maximum flexibility
for porting, extending, and optimizing safety-critical and
security-critical applications to a multicore architecture.
It starts with a time-partitioned kernel running across all
cores that allows any combination of AMP, SMP, and BMP
applications to be bound to a core or groups of cores called
affinity groups. It then adds time-variance so that partition
time windows do not need to be aligned across cores.

The INTEGRITY-178 tuMP operating system’s added
capability to change core assignments, as required for IMA,
can be used selectively to give some of the applications
for a given partition time window more processing time
and resources, or it can be used to run a whole new set

of applications. For example, a critical image processing
function may have certain modes of operation where the
complexity of the image data being processed requires
additional cores but the deadline remains the same.

The capabilities of INTEGRITY-178 tuMP enable multiple
independent safety- and security-critical applications to
execute on a multicore operating environment in a predict-
able, bounded, and application-independent manner. The

SMP App SMP App

Affinity Group D

Shared Resources and System Interconnect

SMP App

INTEGRITY-178 tuMP OS

Core 0 Core 1 Core 2 Core 3

Figure 2: Example of mixed AMP and SMP/BMP in
INTEGRITY-178 tuMP on a multicore processor.

Affinity
Group A

Affinity
Group B

Affinity
Group C

Shared Resources and System Interconnect

INTEGRITY-178 tuMP OS

AMP App AMP App SMP App

Core 0 Core 1 Core 2 Core 3

Figure 3: Example of full SMP mode in INTEGRITY-178 tuMP.

6

Affinity Group DAffinity Group A Affinity Group CAffinity Group B

Shared Resources and System Interconnect

Partition Time Window 1 Partition Time Window 2

INTEGRITY-178 tuMP OS

Multicore Processor

AMP App AMP App BMP App

Core 0 Core 1 Core 2 Core 3 Core 0 Core 1 Core 2 Core 3

SMP App SMP App SMP App

Shared Resources and System Interconnect

tuMP partition-enforcing scheduling method results in a
unified OS that provides practical time-variant scheduling of
AMP, BMP, and SMP applications simultaneously.

INTEGRITY-178 tuMP Examples
With a unified multi-processing architecture, INTEGRITY-178
tuMP enables the use of AMP, BMP, SMP or any combi-
nation of them in the same processor. In the first example
(Figure 2), there is one application bound to core 0 and
another application bound to core 1, so they are operating
in AMP mode. A third application is bound to cores 2 and
3, therefore its threads can go to either core in SMP mode
or they could be bound to a specific core in BMP mode via
task affinity. Because there is no overlap in core assign-
ments, they all can execute simultaneously.

In the second example (Figure 3), there are three appli-
cations, each of which can execute threads on any of the
four cores. This full SMP mode allows the operating system
to perform deterministic load balancing according to the
overall task priorities, resulting in optimal performance.

Supporting multiple applications executing on one or more
cores in the same partition time window enables support
of event-driven applications such as client-server, where

the clients’ requests are immediately serviced by a server
executing in the same time partition window (instead of
being delayed to another partition time window). Likewise,
interrupt-driven applications are immediately serviced with
this architecture.

The third example (Figure 4) shows the flexibility of
INTEGRITY-178 tuMP. Here the application configuration
from the first example runs in the first partition time
window, and then the application configuration from Figure
3 runs in the second partition time window.

One use of this flexibility is to enable built-in test (BIT) while
using a virtualized/Guest OS. Typically the Guest OS, such
as Linux or Windows, runs on a dedicated core consum-
ing all of the core’s processing time and resources. The
continuous BIT suite, however, needs to run on all the cores
at the same time in order to coordinate the testing of all
the cores and shared resources. Both requirements can be
accommodated using INTEGRITY-178 tuMP by having the
BIT application assigned to all cores in a separate partition
time window.

These same techniques can be used to plan for future ex-
pansion. By leaving one core unused and one partition time

Figure 4: The time-variant capability of INTEGRITY-178 tuMP allows different bindings of
applications to cores in different partition time windows.

7

window unused across all cores, an existing application can
grow in either direction or both. A new application can slide
into the unused core for one or more time windows, or can
use one or more cores in the spare time window.

This ability to assign applications across cores and time
windows maximizes flexibility to port existing applications,
add new capabilities to meet future needs, and to adapt
designs to meet certification requirements.

Interference Monitoring and Mitigation
As mentioned earlier, multicore processor architectures
include several shared resources such as memory, cache,
I/O, and the interconnect that connects the cores to the
other resources. Contention for these shared resources
can create interference between cores, even when there
is no explicit data or control flow between applications on
different cores. These interference channels can cause
non-deterministic behavior in critical software applications.

INTEGRITY-178 tuMP includes a Bandwidth Allocation
and Monitoring (BAM) capability to observe interference
channels and mitigate them. Based upon more than 60
staff-years of research and development into multicore
interference analysis and mitigation strategies, BAM mon-
itors and enforces the allocation of bandwidth to shared
resources for each of the cores. Green Hills has imple-
mented an internal mechanism for INTEGRITY-178 tuMP
bandwidth allocation and monitoring that uniquely uses
an extremely small time quantum in order to enforce the
cores’ use of shared multicore resources as opposed to the
typical approach using high-level fault detection. The BAM
mechanism expects the obvious: that applications do NOT
have a fixed bandwidth utilization curve by default, but BAM
enforces a fixed bandwidth utilization curve for them.

The system architect decides how much bandwidth to
allocate to each core based on the functional requirements
of the applications or their design assurance levels. When
applications on a particular core reach the threshold band-
width for a given BAM time quantum, that core is cut off
from consuming shared resources until the next BAM time
quantum. Using this mechanism, a DAL-A application run-
ning on core 0 can be allocated a set amount of resources,
such as 60% of the total bandwidth, while the other 3 cores

could be allocated only 15%, 15%, and 10% respectively.
BAM is developed to DO-178 DAL A objectives, and it
allows integrators to mitigate interference issues.

Setting the proper bandwidth allocation requires analysis
and testing of the application. To aid in that analysis, Green
Hills Software provides interference and DMA generating
libraries and a bandwidth reporting library. The interference
and DMA generating libraries are tailored to each processor
architecture and contain hundreds of interference profiles
to simulate interference beyond what is found in typical
applications. Running the interference and DMA generating
libraries on all cores not used by a particular application
concurrently with the application execution provides the
new multicore worst case execution timing (WCET).

The bandwidth reporting library uses the interference and
DMA generating libraries to get a measured picture of the
total amount of bandwidth available after accounting for
the interference. Knowing the total bandwidth available will
aid in setting the bandwidth allocation thresholds in BAM.
The bandwidth reporting library runs the interference and
DMA generating libraries across a configurable number
of cores concurrently. Specific subsets of the hundreds of
interference profiles can be selected in order to tailor the
evaluation more closely to the expected applications, and
custom interference profiles can be created. The available
bandwidth will depend not only on the processor model but
also the memory type, clock speed, configuration registers,
and which interference profiles were selected to approxi-
mate the final application configuration.

Example Bandwidth Allocations

Core 0 Core 1 Core 2 Core 3

60

40

20

80

0

Figure 5: Example bandwidth allocations set and enforced
using BAM.

8

Case Study: Critical Airborne Systems Based on
Multicore Processors

by CMC Electronics

CMC Electronics provides smart displays and processing
computers for airborne applications. Our aircraft OEMs
and system integrators have demanding requirements for
the next generation of smart platforms: critical systems
must 1) follow open architecture principles, 2) be ca-
pable of hosting software applications developed to the
highest assurance levels, 3) provide sufficient growth
capability, and 4) operate in harsh environments at high
temperatures.

To meet these challenges, we introduced the MFD-3068
Smart Multi-Function Display and the PU-3000 series of
Avionics computers, CMC’s 3rd generation of Smart
Displays and Processing Computers. Both systems
leverage our next-generation of MOSArt™ (Modular
Open System Architecture) middleware and a multicore
processor supported by a high integrity operating system.
MOSArt was founded on non-proprietary industry stan-
dards for the partitioning of applications (ARINC 653). In
selecting an operating system it was clear that it must

enable our critical systems to achieve the throughput
and hardware consolidation benefits available from a
multicore processor. The operating system’s software
architecture must also be capable of meeting the open
systems requirements for multicore systems as defined in
ARINC-653 Supplement 4. Equally important from a sys-
tem certification, growth and sustainment point of view,
the operating system’s features and capabilities must
enable EAV to mitigate, on a continuing basis, the risks
associated with multicore processors in critical systems.

The selection of a multicore processor offered longer term
availability while providing significant flexibility in meeting
the processing throughput and room for growth desired
by our customers. To capitalize on the potential of this
architecture and after a very thorough and extensive trade
study, we selected Green Hills Software’s INTEGRITY-178
tuMP Multicore Real-Time Operating System (RTOS)
because it met both our short and long term throughput
goals without jeopardizing our safety certification require-
ments. Its Unified Multi-Processing approach, including
the usage of Affinity Groups, provides the flexibility and
integrity necessary to meet these challenges.

Taken together, the interference and DMA generating librar-
ies, bandwidth reporting library, and BAM runtime mecha-
nisms provide the tools necessary for a system integrator
to determine multicore worst case execution times, mitigate
interference, and certify multicore systems. These tools
provide a complete solution to mitigating multicore inter-
ference. These interference mitigating capabilities provided
by Green Hills Software reduce certification risk and enable
faster time-to-market by simplifying the verification and
analysis activities.

BAM reduces risk and simplifies the development, integra-
tion, deployment and sustainment of critical systems. BAM
enables optimal core utilization in critical systems yielding
superior SWaP reduction and Spare Computing Capacity.
This bandwidth allocation and monitoring capability is
essential for IMA OEMs and developers to meet the IMA
requirement that applications are independently modifiable.

The capability to independently modify applications is
necessary to meet the high-level IMA goals of providing
cost-effective upgrade paths and introducing new oper-
ational capabilities without retesting and reverifying the
entire system.

Security: The Final Frontier
Today’s safety-critical systems face a variety of threats from
both unintentional and malicious actors. If the software
is changed maliciously or even unintentionally from the
certified configuration, it is no longer safe. Bottom-line,
a system that is not secure puts safety at risk. Nor is it
sufficient to have separate OS products with one being safe
and another being secure, as the primary OS or hypervisor
needs to be both safe and secure. Green Hills recognizes
this requirement by building both safety and security into
the same INTEGRITY-178 tuMP RTOS.

9

One proven approach for a Multiple Independent Levels
of Security (MILs) operating system is to architect it as a
separationb kernel. A separation kernel is intended to fully
isolate multiple partitions and control the information flows
between applications/partitions and external resources. In
part, that includes protection of all resources from unau-
thorized access, isolation of partitions except for explicitly
allowed information flows, and a set of audit services. The
result is that a separation kernel provides high-assurance
partitioning and information flow control that satisfy the
non-bypassable, evaluatable, always invoked, and tamper-
proof (NEAT) security policy attributes.

In 2007, the Information Assurance Directorate of the U.S.
National Security Agency (NSA) published the Separation
Kernel Protection Profile (SKPP), a security requirements
specification for separation kernels suitable to be used
in the most hostile threat environments. In 2008,
INTEGRITY-178 became the first and only operating system
to be certified against the SKPP. That certification was to
the highest Evaluation Assurance Level (EAL 6+) for general
software products. Even though the SKPP has now been

sunsetted, the evaluation criteria remain the strictest the
industry has seen and is still specified by programs of
record. INTEGRITY-178 tuMP continues to meet the SKPP’s
rigorous set of functional and assurance requirements for
those customers needing it.

Beyond the approval as a MILS separation kernel,
INTEGRITY-178 tuMP provides a complete set of APIs that
were also evaluated by the certification authority for use
by Multi-Level Security (MLS) applications within a secure
partition, e.g. an MLS guard, which is a fundamental
requirement in a cross-domain system. Because both safety
and security are designed into the same product, those
secure APIs include support for multithreading, concurrent
execution on multiple cores, and flexible core assignments
at the configuration file level, all within the secure MLS
environment. The unique bandwidth allocation and monitor-
ing capability in INTEGRITY-178 tuMP can be used to thwart
denial-of-service attacks from compromised partitions/
applications resulting from the unintended or malicious use
of the multicore processor’s shared resources.

NEAT Security Policy Attributes

The four main security attributes of a high-assurance separation kernel (i.e. security monitor):

Non-bypassable: An application cannot bypass the security monitor.

Evaluatable: The security monitor is modular, small in size, and sufficiently low in complexity to support
 rigorous evaluation.

Always-invoked: Each and every access and communication is checked by the security monitor.

Tamperproof: The system prevents unauthorized changes to the security monitor code, configuration,
 and data.

10

Essential Multicore RTOS Requirements for Critical Airborne Systems

Time-Variant Unified Multicore
Processing

Optimal core utilization in a high-assurance and deterministic
manner resulting in maximum system throughput, lower system
SWaP, and greater spare computing capacity

Shared Resources Bandwidth
Enforcement

Bandwidth allocation and monitoring of shared multicore resources
in order to mitigate the risk of interference from the shared
resources and simplify the development, integration, deployment,
and sustainment of critical systems

Independent Subsystem Decomposition The ability to assign one or more cores to applications and partition
time windows independently of other subsystems

Multicore Standards Support Complete support for open standards addressing multicore
processing, including ARINC 653 Part 1, Supplements 4/5 and
FACE version 3.0

Secure Guest OS Virtualization Reduces certification burden of the hypervisor to the same level as
its actual Guest OS application. Guest OS partitions are subject to
the same Bandwidth Enforcement as the non-virtualized applica-
tions (eliminates risk of interference caused by Guest OS and its
applications).

Tightly Integrated Development Tools A development environment tightly integrated with the high-
assurance multicore RTOS that has a proven track record of
success for C, C++, and Ada

Safety-Critical Middleware DAL A-compliant file system and networking components based on
a client/server design – server resides in any core or partition and
serves multiple clients at different safety levels

11

Corporate Headquarters

30 West Sola Street • Santa Barbara, CA 93101
ph: 805.965.6044 • fax: 805.965.6343 • email: info@ghs.com • www.ghs.com

European Headquarters

Fleming Business Centre • Leigh Road • Eastleigh • Hampshire S050 9PD • United Kingdom
ph: +44 (0)2380 649660 • fax: +44 (0)2380 649661 • email: info-emea@ghs.com

Safety & Security Critical Products

34125 US Hwy 19 North • Suite 100 • Palm Harbor, FL 34684
ph: 727.781.4909 • fax: 727.781.3915 • email: info-sscp@ghs.com

Green Hills, the Green Hills logo, INTEGRITY, and tuMP are trademarks or registered trademarks of Green Hills Software in the US and/or internationally.
All other trademarks (registered or otherwise) are the property of their respective owners.

© 2020 Green Hills Software. v0820

