
WHITE PAPER

AXIS Takyon:
a much-needed solution
to communication
in embedded HPC
applications
Michael Both,
Principal Software Engineer

WHITE PAPER 2

Introduction

The problem
In the eHPC (embedded high performance computing) market,
developers are focused on domain-specific application
development (e.g. radar processing, signal intelligence,
autonomous driving). These domain-specific problems require
substantial algorithm expertise (math, physics, etc.) not related
to communication.

The resulting applications may be compute-intensive such that
in order to achieve real-time, the algorithm must be distributed
across multiple compute elements (e.g. CPUs, GPUs, FPGAs,
ASICs) that make up a heterogeneous system. They must
also integrate high throughput I/O devices like video, lidar, and
radar sensors as well as high speed storage. Distributing the
processing and integrating I/O currently requires multiple non-
trivial communication interfaces (e.g. sockets, verbs, shared
memory, semaphores, conditional variables).

Overall, eHPC developers are immersed in the algorithm
development (the primary focus), but when it comes time to
distributing the application, point-to-point communication is
typically a secondary focus.

Abaco is leading an effort to create a new
open standard point-to-point communication
in order to address a significant problem in the
embedded HPC (eHPC for short) market.

AXIS Takyon: a much-needed solution to communication
in embedded HPC applications

Why is Point-to-point Communication a Problem?
The world of computing in the eHPC market is evolving quickly.
In the last 20 years, there have been great advances in hardware
and software.

Some examples of how hardware has evolved:

•	 Multi-core processors are now commonplace, which allows for
concurrent MIMD computing in a single CPU.

•	 General purpose processing on GPUs to allow for concurrent
SIMD computing. This is excellent for image processing, deep
neural network processing, etc.

•	 High speed interconnects like RDMA which avoid operating
system calls during the transfer.

•	 High throughput I/O sensors and devices: e.g. HD cameras,
lidars, radars, VR headsets, solid state hard drives.

WHITE PAPER 3

Software is also evolving in remarkable ways, making software
development easier to code and easier to debug:

•	 Artificial Intelligence
•	 Compiler technologies: e.g. optimizations, OpenMP, code

analysis, debuggers
•	 GPU languages: e.g. CUDA, OpenCL, Vulkan, Metal
•	 Wireless protocols: e.g. Wi-Fi, Bluetooth, NFC
•	 Multiple virtualized operating systems running on a single CPU
•	 RDMA communication (e.g. verbs, network direct)

Unfortunately, when it comes to point-to-point communication
APIs, there has been little advancement towards making it easier
for developers who are not focused on communication - but need
it. There are three fundamental issues:

•	 Fragmentation
•	 Complexity or lack of functionality
•	 Geriatrics

Each of these poses a significant barrier to an eHPC developer
since communication is a secondary focus, not a primary
focus like the core algorithm technologies with which they are
familiar. This lack of wisdom for integrating communication
may result in an overall algorithm performance hit and may
increase development and maintenance costs. The following is a
discussion of each of these issues.

Fragmentation
An eHPC application may have multiple input devices (FPGAs,
cameras, radar, etc.) and multiple heterogeneous compute
devices (CPUs, GPUs). To properly distribute an eHPC application,
multiple point-to-point communication frameworks (open
standards and proprietary) may be required.

The diagram below demonstrates the potential complexity
(although in practice, it would be a subset of this).

This requires multiple communication API implementations in
the application source code. The more source code, the more
potential bugs, the more lines of code, and the more changes
needed if the application is mapped to different hardware or
interconnects.

In the eHPC market, certification is common. If the application
has significantly more code due to the communication, this
results in increased time and cost for the certification process.

AXIS Takyon: a much-needed solution to communication
in embedded HPC applications

WHITE PAPER 4

Ideal Solution
The ideal solution would be to have all communication handled by
a single API, as shown below:

requirements in terms of performance (latency, throughput,
determinism). Communication paths need to be tuned for the
desired performance behavior. For example, by default, sockets
are set to fill a buffer before sending (not good for low latency).

With the above common eHPC restrictions, the lines of code for
setting up and executing a simple one-way transfer are not trivial.

The following chart shows an intelligent estimate for common
communication APIs:

P2P Communication API One Way Communication LOC

Socket ~200

Verbs, Network Direct ~2000

Mutexes and conditions to track
local memory or pointer transfers

~200

Shared memory (between
processes)

~200

MPI (Not widely adopted by the
eHPC community)

~20

This is just the minimum. The number of lines of code goes up
as concepts like multi-buffering, CUDA interoperability, collective
communication, etc. are added

For an eHPC engineer trying to distribute an algorithm across
compute elements, their typical understanding of point-to-point
communication is about two concepts: sending and receiving - but
the engineer will find it daunting to realize common communication
APIs are not just two functions: send() and receive().

Complexity or lack of functionality
Even if fragmentation was not an issue, the common point-to-
point communication APIs used today are not trivial. Low level
APIs (e.g. sockets, verbs) seem to follow the detailed concepts of
the underlying hardware instead of being well-defined black boxes
following the simple intuition of sending and receiving. High level
APIs (e.g. MPI) hide the hardware details in a black box, but don’t
have the functionality needed by eHPC applications.

To quantify complexity, all that needs to be shown is how many
realistic lines of code are needed to handle a simple transfer of
data. To be realistic in an eHPC application, the count must include:

•	 All error checking: An eHPC application may have a critical
requirement of detecting failures.

•	 Portable source code: An eHPC application may need to
work on various operating systems. Even an API as portable
as sockets, there are still a wide set of variations between
Windows®, Linux®, VxWorks®, Mac, etc. that require either
#ifdefs, if statements, or separate compiled source files.

•	 Performance-enabling source code: Applications have different

AXIS Takyon: a much-needed solution to communication
in embedded HPC applications

WHITE PAPER 5

Geriatrics
Communication interconnects (i.e. the hardware) have
a set of capabilities that may or may not be exposed by
the communication API (i.e. the software). If the software
does not expose certain capabilities of the hardware, then
eHPC developers may find it difficult to achieve application
requirements and compromises might be made.

The following subsections describe various issues that
communication APIs might have.

Fault Tolerance
Most lower level communication APIs support the hooks for fault
tolerance:

•	 Know if a communication path has become invalid (such as
disconnect detection)

•	 Timeouts for each stage of communication (connect, send,
receive, disconnect) to know if the communication path is no
longer responsive in a reasonable time

•	 Avoid static dataflow; i.e. should be able to create and destroy
paths at any time during the life of the application

•	 Communication paths should be independent; i.e. if one path
goes bad, it should not affect other paths

Notice that these are just hooks for the application to build in
fault tolerance, as the communication API should not try to make
decisions for the application. Only the application knows what
‘plan B’ is in the case of a failure.

Some communication APIs, such as MPI, lack explicit hooks for
fault tolerance. MPI itself may be internally fault-tolerant, but this
may not be helpful to an eHPC application that needs to explicitly
know about failures so it can invoke that ‘plan B’. MPI is also
globally initialized, which means if one communication path goes
down, then other paths may be brought down with it. All these
issues are likely one of the primary reasons MPI is not generally
used in the eHPC field.

Proposed Solution: Make sure all stages of communication
(connect, send, receive, disconnect) support timeouts and
failure detection and return that information back to the
application. Also, make sure all communication paths are
independent of each other.

The following table shows the number of functions that should be
learned to fully understand how to use the API:

P2P Communication API API Function Count

Socket ~20

Verbs, Network Direct ~100

Mutexes & Conditions to track
local memory or pointer transfers

~20

Shared memory (between
processes)

~20

MPI (Not widely adopted by the
eHPC community)

~300

Sockets may only have about 20 functions, but they have
hundreds of attributes that can be set - so that needs to be taken
into account also.

The learning curve for most communications APIs is very high.
Without studying all the functionality and terminology, the
engineer would not have the knowledge or wisdom to understand
what functions will best satisfy the strict requirements of an
eHPC application, leading to compromises in the design. Even
if the engineer does find the time to really learn a complex
communication API - since it’s likely a secondary API - the
complex details may be quickly forgotten, especially if there is a
regular turnover of engineers on the project.

Ideal Solution
The ideal solution would be to have a minimal set of APIs but still
provide the flexibility to the experts:

P2P Communication
API

One Way
Communication LOC

API Function
Count

New API ~20 ~5

This includes minimizing any attributes of the API to only the
options that are intuitive. Any other details should be hidden or
expressed in some interconnect-specific set of flags defined
outside of the formal specification. For example, sockets need an
IP address and port number, so a string could be used to set that
up: “socket -ip 192.168.1.234 -port 1234”

AXIS Takyon: a much-needed solution to communication
in embedded HPC applications

WHITE PAPER 6

Preparing Transfer Memory Buffers
Some interconnects, like RDMA, require that transfer memory is
pre-registered before use. This usually means pinning the memory
buffers so they can’t be swapped out to disk. Communication APIs
like sockets and MPI both pass memory addresses to the send and
receive functions at the time of transfer.

Following is some pseudo code to represent that concept:

Send(path_id, sender_data_addr, bytes);
Recv(path_id, recver_data_addr, &bytes_received);

This means there needs to be an operating system context
switch to pin the memory on both sides of the transfer(see the
Linux man page for the ‘mlock()’ family of functions) , then the
sender needs to ask the receiver where the data will be sent,
which requires an implicit round trip. Pinning memory and doing
a hidden round trip before the real transfer starts will have a
significant impact on latency and determinism. Pinned memory
caching can be used to help reduce the problem, but it does not
eliminate the problem. This is another primary reason why MPI is
not typically used in the eHPC market.

Proposed Solution: Register transfer buffers outside of critical
processing, like when a communication path is being created.

The above pseudo code would change to:

Send(path_id, bytes);
Recv(path_id, &bytes_received);

Where the sender and receiver data addresses would be known at
the time the path was created.

Sender Synchronization
Some interconnects, like sockets, have built in synchronization
to know when it is safe to send data to the receiver, i.e. the
receiver has finished processing the previous block of data and
is no longer using the memory buffer - so new data can safely
arrive without corrupting the processing of the previous data.
Some interconnects don’t have this built in synchronization, so
it’s up to the application to know when it is safe to send data.
Interconnects like MPI add implicit synchronization, but that has
some side effects:

•	 Transfers are no longer deterministic
•	 Extra synchronizations may occur that were not needed, which

decreases performance
•	 Synchronization may occur at a time that is not ideal

Proposed Solution: Only the application can know when it’s
the appropriate time to inform the sender that the receiver
is ready for more data. This form of synchronization should
therefor be left to the application via explicit means (unless
built into the interconnect). For example, when the receiver
has finished with a transfer buffer, then it could send a zero-
byte message to the sender as a notification that the buffer
is free to be filled again.

Multiple Ways to Send/Receive
Some interconnects have multiple ways of sending and receiving.
For example, verbs has three fundamental ways of transferring
(one-sided push, one-sided pull, two-way coordinated transfer).
MPI has four variations of send/receive plus one-sided push and
one-sided pull transfers. To complicate these transfer methods,
each one may also have different ways to handle transfer
completion, either by secondary functions, or though some user
defined way such as spinning on a variable change. These non-
trivial variations may be acceptable for an expert - but not for an
engineer who sees communication as secondary.

Proposed Solution: Support one type of send/receive
functionality. The best possible foundation for sending
and receiving is to have a two-sided, one-way, zero-copy
transfer where the completion notification for receiving is
built into the transfer. Any other functional model of send/
receive would likely add unwanted overhead and source code
complexity.

Data Privacy
Some communication APIs want to know the data structure
of the messages being passed. For example, MPI requires
knowledge of the data structure in the sender and receiver,
via MPI-defined data structures (not language-native data
structures). Not only does this increase source code to convert
between native data structures and MPI data structures, but this
may also be an issue with privacy as messages could be reverse-
engineered in the MPI transport. This can be avoided by just
passing contiguous byte arrays - but then defeats the purpose of
the clever features MPI allows while the data is on the transport.

But: clever data manipulation on the transport may also have
performance impacts. For example, if complex data (interleaved
real and imaginary values) is sent, and it’s reorganized on the
transport to be split into an array of real values and another array
of imaginary values, then the transport must do some work
to split the interleaved data. Most transports don’t have this
capability in hardware which means the CPU must implicitly do
one of the following:

AXIS Takyon: a much-needed solution to communication
in embedded HPC applications

WHITE PAPER 7

•	 Allocate temporary memory on the source side to create two
contiguous buffers for the split data, spend time filling the
buffers, do the transfer, and finally de-allocate the temporary
buffers. This may fail if the needed memory is not available.

•	 Send each individual value with a separate transfer. It might
be thought that many interconnects support strided transfers,
but in reality, almost no interconnects support this. Even
InfiniBand® does not, as it only supports a small set of linked
transfers (typically hundreds), which is not useful when sending
thousands or millions of strided values.

In both cases, there will be a significant impact on latency,
throughput, and determinism.

Proposed Solution: Don’t expose the message datatype to
the communication API, and don’t allow non-contiguous
data transfers. Applications can explicitly do the most
optimal processing to handle strided data, and there will be
no mystery to the application developer, who will be best at
optimizing this type of situation.

Mixing Polling and Event Driven
Most communication APIs allow the option to handle send
completion and receive completion via either polling or event
driven. Polling is good for very low latency – but at the expense
of consuming valuable CPU cycles. Event-driven is excellent for
reducing unneeded CPU spinning at the expense of latency.

With most lower level communication APIs, each path can be set
to polling or event-driven independent of other paths. Some high-
level APIs, such as MPI, only allow one choice for all paths. This
can be very restricting in an eHPC application when some data
transfers need to be very responsive via polling, and other data
transfers can be non-critical, allowing the CPU to undertake more
critical processing if the path is event-driven. This is yet another
reason why MPI may not fit well in an eHPC application.

Proposed Solution: Ensure all paths are independent of each
other and allow each path to be polling or event-driven.

Why has this problem not yet been solved?
Outside of the eHPC market, point-to-point communication is
generally not used in a heterogeneous environment.

In the supercomputer HPC market, MPI is prevalent. This market
is more focused on, for example, simulation or solving very large
math problems over a period of non-critical time. Real-time,
latency, and explicit fault tolerance are generally not a concern.
This means only one communication API - in this case, MPI - will
suffice. It should be noted that MPI tried to create the MPI/RT
initiative to better fit in the eHPC market, but this was not adopted
by the eHPC community. This is likely due to the foundation of
MPI not fitting with the requirements of an eHPC application.

In the mobile (iOS, Android), IoT (surveillance cameras,
thermostats, etc.) or web markets, generally only one
interconnect type is needed. Communication with the internet is
dominated by sockets.

Markets outside of eHPC don’t suffer from the fragmentation
of heterogeneous applications. These other markets may have
a little issue with complexity or geriatrics, but it’s insignificant
enough that it doesn’t warrant a new standard.

This leaves only the smaller eHPC market that could significantly
benefit from a new unified point-to-point communication
standard. Within this market, engineers see communication as
a secondary API, so they are not likely to have the wisdom or
time to define a communication API that will not only work for
their application, but for all other applications in the eHPC field.
This makes it very difficult to find dedicated participation in the
various eHPC markets to define a new standard.

AXIS Takyon: a much-needed solution to communication
in embedded HPC applications

WHITE PAPER 8

WE INNOVATE. WE DELIVER. YOU SUCCEED.
Americas: 866-OK-ABACO or +1-866-652-2226 Asia & Oceania: +81-3-5544-3973
Europe, Africa, & Middle East: +44 (0) 1327-359444
Locate an Abaco Systems Sales Representative visit: abaco.com/products/sales

abaco.com @AbacoSys
©2019 Abaco Systems. Windows is a registered trademark of Microsoft Corporation. Linux is the trademark of
Linus Torvalds. VxWorks is a registered trademark of Wind River Systems. InfiniBand is a registered trademark
and service mark of the InfiniBand Trade Association. OpenGL is a registered trademark of Silicon Graphics Inc.
All other trademarks are the property of their respective owners.

06/19

Introducing Takyon
With many years of experience using and implementing point-to-
point communication APIs, Abaco has created an open source
point-to-point communication specification and reference
implementation, which intends to solve the issues discussed in
this paper:

•	 One API with five functions that can support all modern
interconnects including I/O device communication

•	 Designed for real-time, determinism, and fault tolerance
•	 Easy for the beginner and flexible for the expert

Takyon can be found on GitHub at:
https://github.com/Abaco-Systems/axis-takyon

This implementation includes many examples to show how
simple, powerful, and flexible Takyon is. Abaco will soon
create a commercial version of Takyon that will include more
interconnects for easier use with GPUs, I/O devices, and RDMA-
enabled hardware.

Abaco believes it has created a specification that is well suited
as an open standard. This led Abaco to approach Khronos
(a standards group) since they are focused on embedded/
heterogeneous computing and have experience in replacing a
geriatric API (OpenGL™) with something that better fits modern
hardware (Vulkan).

Takyon
Khronos created an exploratory group for Takyon to gauge
industry interest. The exploratory group surveyed the eHPC
market to find that there is a large interest in an API that solves
the issues described in this paper. In order to proceed with a
Khronos working group to create an open standard specification,
new members are needed to become part of the group who are
willing to actively participate in creating the new standard.

If you would like to participate in formulating the standard, please
contact David Tetley, Khronos Exploratory Group Chair and
Principal Software Engineer at Abaco Systems.

AXIS Takyon: a much-needed solution to communication
in embedded HPC applications

